Wel of geen HDL-C in het cardiovasculaire risicoprofiel ?

Jogchum Plat

Prof Physiology of Nutrition

Department of Nutrition and Movement Sciences School for Nutrition and Translational Research in Metabolism (NUTRIM) Maastricht University, The Netherlands

Member Dutch Academy of Nutrition Sciences

CVD Risk as a Function of LDL and HDL-C - (men aged 50-70 y) *Framingham Heart Study* -

Modified from Castelli WP. Can J Cardiol 1988;4:5A-10A.

Elevated serum LDL-cholesterol - A causal risk factor of CVD -

- Causal relationship between LDL-cholesterol and CVD is supported by
 - genetic studies
 - epidemiological studies
 - Mendelian randomisation studies
 - randomized control trials

 LDL-cholesterol lowering irrespective of underlying mechanisms/intervention lowers CVD risk

Lowering LDL-cholesterol: The *lower the better,* and the *earlier the better!*

Ference BA et al. Eur Heart J. 2017;38;.2459-2472

Low density lipoproteins cause atherosclerotic cardiovascular disease

Magnitude of exposure to lower LDL-C (mmol/L)

Ference BA et al. Eur Heart J. 2017;38;.2459-2472

Both statin and non-statin interventions that lower LDL reduce relative risk for major vascular events

Silverman MG et al. JAMA. 2016;316;.1289-1297

Figure 6. Dose-Dependent Associations and Meta-Regression Analysis for Combinations of Increasingly Lower LDL-C and Lower SBP on the Risk of Major Coronary Events

What about HDL-c?

- Cross-sectional
- Interventions (nutrition / pharmacological)
- Genetics

Cross-sectional data Harzard ratio's for coronary heart disease across quintiles of TAG, HDL-C and non-HDL-c concentrations

Data is based on 302430 subjects from 68 studies including 12785 cases

Emerging Risk Factor Collaboration, JAMA 2009;302:1993-2000

Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials

Laura Chiavaroli ^{a,b}, Stephanie K. Nishi ^{a,b}, Tauseef A. Khan ^{a,b}, Catherine R. Braunstein ^{a,b}, Andrea J. Glenn ^{a,b}, Sonia Blanco Mejia ^{a,b}, Dario Rahelić ^f, Hana Kahleová ^{g,h}, Jordi Salas-Salvadó ^{i,j}, David J.A. Jenkins ^{a,b,c,d,e}, Cyril W.C. Kendall ^{a,b,k,*}, John L. Sievenpiper ^{a,b,d,e,*}

						Heterogeneity						
	Outcome	No. trials	N	MD (95% CI)	SMD (95% CI)	S	SMD (95% CI)			% P-value *	%Change* *	
PRIMAR	Y OUTCOME										!	
i	LDL-C (mmol/L)	7	439	-0.73 [-0.89, -0.56]	-3.28 [-4.00, -2.51]			<0.0001	67%	0.006	-17%	
SECOND	ARY OUTCOMES											
Lipids	TC (mmol/L)	7	439	-0.81 [-0.98, -0.64]	-3.53 [-4.27, -2.79]			< 0.0001	52%	0.05	-12%	
	TG (mmol/L)	7	439	- <u>0 28 [-0 42 -0 14]</u>	<u>-1 48 [-2 22, -0.74]</u>		╾╼╼╴	<0.0001	58%	0.03	-16%	
<u> </u>	HDL-C (mmol/L)*	7	439	-0.01 [-0.05, 0.03]	-0.19 [-0.93, 0.56]			0.56	22%	0.26	-1%	
	non-Hot (mmol/t)		439	-0.83 [-1.03, -0.64]	-3.15 [-3.91, -2.43]			<0.0001	01%	0.02	-14%	
Apolipop	proteins											
	ApoB (g/L)	7	439	-0.19 [-0.23, -0.15]	-3.52 [-4.26, -2.78]			< 0.0001	60%	0.02	-15%	
Blood Pr	ressure											
	SBP (mmHg)	7	439	-1.75 [-3.23, -0.26]	-0.87 [-1.61, -0.13]		—	0.02	0%	0.79	-1%	
	DBP (mmHg)	7	439	-1.36 [-2.33, -0.38]	-1.03 [-1.77, -0.28]			0.006	0%	0.46	-2%	
Inflamm	ation											
	CRP (mg/L)	7	435	-0.58 [-1.01, -0.15]	-1.08 [-1.88, -0.28]		—	0.008	33%	0.18	-32%	
Estimate	ed 10-year CHD Risk											
	CHD risk (%)	5	415	-1.34 [-2.19, -0.49]	-1.38 [-2.26, -0.51]		→	0.002	54%	0.07	-13%	
Body We	eight											
	Body weight (kg)	7	439	-0.1 [-0.48, 0.27]	-0.20 [-0.95, 0.53]			0.59	0%	0.99	0%	
						-5.00 -3.00	-1.00 1.0	0				

Chiavaroli et al. Prog Cardiovasc Dis. 2018;61:43-53

Association between plant-based diets and LDL cholesterol: a systematic review and meta-analysis

Study name	Subgroup within study	Comparison	Outcome	Statistics for eac		each study		Dif	ference in means	s and 95% CI		
				Difference in means	Lower	Upper limit						
Study name Fernandes Dourado et al., 2011 (26) Burslem et al., 1978 (11), 30-40 yr male Sanders & Roshanai, 1992 (29), male Lu et al., 2000 (16), female Sacks et al., 1975 (10) Teixeira et al., 2007 (14) Lu et al., 2000, male (16) Roshanai & Sanders, 1984 (24), male Burslem et al., 1978 (11), 20-30 yr male Nestel et al., 1981 (37) Krajcovicova-Kudlackova et al., 1994 (34), female Kuriman & West, 1982 (23) Burslem et al., 1978 (11), 20-30 yr female Krajcovicova-Kudlackova et al., 1994 (34), female Krajcovicova-Kudlackova et al., 1994 (34), male Richter et al., 1978 (11), 20-30 yr female Burslem et al., 1978 (11), 20-30 yr female Krajcovicova-Kudlackova et al., 1994 (34), male Richter et al., 1997 (28), female Nieman et al., 1999 (28), male Fu et al., 2008 (17) Yang et al., 2011 (19) Harman & Parnell, 1998 (13), female Kim et al., 2012 (18) Fisher et al., 1996 (22) Gojda et al., 2013 (32) Li et al., 1999 (25) Sanders & Roshanai, 1992 (29), female Jan et al., 2015 (33	Subgroup within study Lacto-ovo Vegan Vegan Vegan Vegan/Lacto Pesco Lacto-ovo/Vegan/ Pesco/Lacto Vegan Vegan Lacto-ovo Lacto-ovo/Lacto Vegan Vegan Lacto-ovo/Lacto Lacto-ovo Lac	Comparison Omnivorous	Outcome LDL LDL	Statistic Difference in means -56.390 -52.000 -49.884 -47.951 -45.000 -44.857 -42.537 -39.000 -36.000 -35.190 -34.000 -33.000 -34.803 -34.003 -34.803 -29.003 -28.616 -27.842 -24.300 -20.108 -19.335 -19.240 -19.200 -16.241 -15.855 -13.921 -12.374 -11.800 -9.000	z for each : Lower limit -74.306 -74.929 -73.827 -67.020 -52.606 -56.884 -61.912 -65.214 -54.672 -62.641 -48.070 -59.145 -61.204 -48.443 -45.517 -48.443 -45.517 -48.443 -55.517 -48.792 -52.489 -51.245 -42.204 -26.663 -32.396 -31.898 -20.671 -37.686 -27.872 -36.280 -19.653 -38.685 -25.471	study Upper limit -38.474 -29.071 -25.941 -28.882 -37.394 -33.116 -27.802 -19.860 -23.328 -9.359 -22.309 -10.461 -6.796 -17.557 -16.355 -9.213 -4.743 -4.439 -6.396 -14.154 10.100 -6.084 -6.502 -11.811 5.977 0.030 11.531 -3.947 15.483 7.471			ference in means	<u>- and 95% CI</u>		
Huijbregts et al., 1980 (39) Chen et al., 2011 (31) Huang et al., 2014 (32), postme nopa usal Lee et al., 2000 (15) Karabudak et al., 2008 (36) Roshanai & Sanders, 1984 (24), female Lin et al., 2001 (27) Goff et al. 2005 (35) Jung et al., 2013 (20) Huang et al., 2014 (32), premenopausal	Lado-ovo Lado-ovo Vegan Lado-ovo Semi/Lacto-ovo/Lacto Vegan Vegan Vegan Vegan	Omnivorous Omnivorous Omnivorous Omnivorous Omnivorous Omnivorous Omnivorous Omnivorous Omnivorous Omnivorous	LDL LDL LDL LDL LDL LDL LDL LDL LDL	-8.894 -8.260 -7.900 -7.734 -7.734 -7.347 -4.000 -1.934 -0.500 3.600 -22.927	-31.641 -15.177 -14.890 -16.816 -23.033 -30.085 -22.287 -20.247 -8.555 -4.348 -27.923	13.852 -1.343 -0.910 1.348 7.565 15.390 14.287 16.380 7.555 11.548 -17.931	-120.00	-60.00		- 60.0	0	120.00
					Poo	led est	timate	-22.9	mg/dL	(-0.6 n	nmol	/L) 1

Yoko Yokoyama, et al. Nutrition Reviews 2017;75:683–698

(95%CI -27.9 to -17,9 mg/dL); P<0.001

Association between plant-based diets and HDL cholesterol: a systematic review and meta-analysis

Study name	Subgroup within study Comparison (Outcome	Statistics for each study			Difference in means and 95% Cl			
				Difference in means	Lower limit	Upper limit				
Burslem et al., 1978 (11), 20-30 yr male	Vegan	Omnivorous	HDL	-11.000	-16.117	-5.883				
Gojda et al., 2013 (38)	Vegan	Omnivorous	HDL	-10.828	-23.561	1.906				
Burslem et al., 1978 (11), 30-40 yr female	Vegan	Omnivorous	HDL	-10.000	-19.459	-0.541				
Jung et al., 2013 (20)	Vegan/Lacto/Ovo/Lacto-ovo	Omnivorous	HDL	-8.900	-12.151	-5.649				
Fisher et al., 1986 (12)	Vegan/Lacto-ovo	Omnivorous	HDL	-8.100	-15.168	-1.032				
Karabudak et al., 2008 (36)	Semi/ Lacto-ovo/ Lacto	Omnivorous	HDL	-7.734	-15.747	0.279				
Burslem et al., 1978 (11), 20-30 yr female	Vegan	Omnivorous	HDL	-7.000	-12.900	-1.100				
Huijbregts et al., 1980 (39)	Lacto-ovo	Omnivorous	HDL	-6.961	-13.250	-0.671				
Lu et al., 2000 (16), female	Vegan/Lacto	Omnivorous	HDL	-6.961	-14.165	0.244				
Chen et al., 2011 (31)	Lacto-ovo	Omnivorous	HDL	-6.500	-9.374	-3.626				
Huang et al., 2014 (32), premenopausal	Vegan	Omnivorous	HDL	-6.200	-10.542	-1.858				
Sacks et al., 1975 (10)	Pesco	Omnivorous	HDL	-6.000	-8.975	-3.025				
Jian et al., 2015 (33)	Vegan	Omnivorous	HDL	-5.800	-10.069	-1.531				
Nieman et al., 1989 (30)	Lacto-ovo	Omnivorous (low fat)	HDL	-5.414	-14.984	4.156				
Burslem et al., 1978 (11), 30-40 yr male	Vegan	Omnivorous	HDL	-5.000	-12.095	2.095				
Li et al., 1999 (25)	Lacto-ovo	Omnivorous	HDL	-4.640	-12.712	3.432				
Lee et al., 2000 (15)	Lacto-ovo	Omnivorous	HDL	-4.640	-8.091	-1.189				
Huang et al., 2014 (32), postmenopausal	Vegan	Omnivorous	HDL	-4.500	-8.538	-0.462				
Yang et al., 2011 (19)	Lacto-ovo	Omnivorous	HDL	-4.254	-6.005	-2.502				
Nestel et al., 1981 (37)	Lacto-ovo	Omnivorous	HDL	-4.000	-10.534	2.534				
Chiang et al., 2013 (22)	Lacto-ovo/lacto/Ovo/Vegan	Omnivorous	HDL	-3.867	-5.981	-1.753				
Goff et al. 2005 (35)	Vegan	Omnivorous	HDL	-3.867	-11.642	3.908				
Sanders & Roshanai, 1992 (29), female	Vegan	Omnivorous	HDL	-3.094	-11.668	5.481				
Kim et al., 2012 (18)	Vegan/Lacto-ovo	Omnivorous	HDL	-2.660	-7.151	1.831				
Liebman & Bazzarre, 1983 (21)	Lacto-ovo	Omnivorous	HDL	-2.000	-6.914	2.914				
Krajcovicova-Kudlackova et al., 1994 (34), female	Lacto-ovo/Lacto	Omnivorous	HDL	-1.547	-5.893	2.800				
Roshanai & Sanders, 1984 (24), female	Vegan	Omnivorous	HDL	-1.547	-9.604	6.510				
Lu et al., 2000, male (16)	Vegan/Lacto	Omnivorous	HDL	-1.160	-6.311	3.991				
Krajcovicova-Kudlackova et al., 1994 (34), male	Lacto-ovo/Lacto	Omnivorous	HDL	-1.160	-5.148	2.828				
Sanders & Roshanai, 1992 (29), male	Vegan	Omnivorous	HDL	-1.160	-8.625	6.305				
Teixeira et al., 2007 (14)	Lacto-ovo/ Vegan/ Pesco/ Lacto	Omnivorous	HDL	-0.500	-3.836	2.836				
Harman & Parnell, 1998 (13), male	Lacto/Vegan	Omnivorous	HDL	0.000	-9.491	9.491				
Roshanai & Sanders, 1984 (24), male	Vegan	Omnivorous	HDL	0.387	-5.575	6.349				
Fuetal., 2008 (17)	Lacto-ovo	Omnivorous	HDL	0.900	-14.835	16.635				
Richter et al., 1999 (28), male	Lacto-ovo	Omnivorous	HDL	1.547	-5.431	8.524				
Lin et al., 2001 (27)	Lacto-ovo	Omnivorous	HDL	2.000	-6.234	10.234				
Richter et al., 1999 (28), female	Lacto-ovo	Omnivorous	HDL	3.094	-2.622	8.809				
Knuiman & West, 1982 (23)	Vegan	Omnivorous	HDL	3.867	-4.029	11.763				
Harman & Parnell, 1998 (13), female	Lacto/Vegan	Omnivorous	HDL	3.867	-4.022	11.756				
Fernandes Dourado et al., 2011 (26)	Lacto-ovo	Omnivorous	HDL	4.500	0.329	8.671				
				-3.590	-4.728	-2.452				
							-30.00 -15.00 0.00 15.00 30.00			
					('	7	Pooled estimate -3.6 mg/dl			
						(050/	CI 17 to 25 ma/dl > D<0.001			

When people move towards a low-fat, plant-based diet, not only TC and LDL cholesterol, but also HDL levels decrease

Table 1 Mean changes in selected risk factors from baseline to 30 days

Factor	Participants (n)	Baseline	•	Post-inte	rvention	Mean	95%	% change	t statistic	p value
		Mean	SD	Mean	SD	change	confidence interval			
SBP (mmHg)	4550	133.30	19.08	126.35	16.51	-6.95	-7.39, -6.51	-5.2	31.13	<0.001
DBP (mmHg)	4552	79.83	11.04	75.69	9.89	-4.14	-4.43, -3.85	-5.2	28.22	<0.001
BMI (kg/m²)	4514	31.01	7.30	30.03	7.01	-0.98	-1.01, -0.96	-3.2	78.11	<0.001
TC (mg/dl)	4655	193.55	41.75	172.09	37.83	-21.46	-22.23, -20.69	-11.1	54.73	<0.001
HDL (mg/dl)	4654	54.84	25.76	50.07	23.16	-4.77	-5.03, -4.51	-8.7	36.56	<0.001
LDL (mg/dl)	4550	131.10	62.02	114.00	54.87	-17.10	-17.90, -16.30	-13.0	41.98	<0.001
TG (mg/dl)	4650	143.35	90.02	132.30	74.55	-11.05	-12.80, -9.31	-7.7	12.41	<0.001
FPG (mg/dl)	4587	101.29	28.94	94.86	20.99	-6.43	-6.96, -5.90	-6.3	23.99	<0.001

Table 3 The number of participants meeting metabolic syndrome (MetS) risk factors criteria at baseline and post-intervention

Risk	Baseline	Post-program	Improved MetS status*	% improvement
factor	(N)	(N)	(N)	6775
BMI	2228	1951	+277	12.4%
BP	2761	1994	+767	27.8%
FPG	1618	1145	+472	29.2%
TG	1606	1426	+180	11.2%
HDL	2030	2640	- 610	-30.0%

*Number of participants who improved their MetS status during the intervention for each of the five criteria.

30% increase in HDL-C via CETP inhibition (Dalcetrapid) does not lower death from CVD

Schwarts GG et al NEJM 2012;367:2089-2099

Genetically elevated HDL Cholesterol does not lower the risk of Ischemic Heart Disease

Haase et al. J Clin Endocrinol Metab 2010;95:e500-e510

So, is there an alternative explanation, in line with HDL-C?

70% of the protein mass in HDL is ApoA-I

HDL has many anti-atherogenic functions (mainly linked to its main protein apoA-I)

Cross-sectional, like HDL-C, ApoA-I is also a valid predictor for future CVD risk?

Emerging Risk Factor Collaboration, JAMA 2009;302:1993-2000

ApoA-I infusion has an acute effect on lesion regression

Example of Atheroma Regression in a Patient Who Received High-Dose ETC-216

Nissen, S. E. et al. JAMA 2003;290:2292-2300.

RVX208 stimulates apoA-I gene transcription, elevates apoA-I and lowers time to first event

But also several negative outcome studies

Nicholls SJ et al, Am J Cardiovasc Drugs 2018;18:109-115

And genetic data does not confirm the causal role for apoA-I in CVD risk

Copenhagen city heart study

Haase et al. J Clin Endocrinol Metab 2010;95:e500-e510

So, is there an alternative explanation, in line with HDL-C and apoA-I?

HDL functionality?

HDL functionality is the current paradigm

HDL functionality is often defined as "cholesterol efflux capacity"

How can we measure cholesterol efflux capacity

Talbot et al. Prog Lipid Res 2018;69:21-32

Cholesterol efflux capacity is inversely associated with cardiovascular risk

Cardiovascular Risk Factors		Odds Ratio (95%	% CI)	P Value
Diabetes			1.92 (1.26–2.93)	0.003
Hypertension	ł	— •—	1.80 (1.31-2.47)	< 0.001
Smoking	÷	—	1.30 (0.95–1.73)	0.10
LDL cholesterol	-+	_	1.01 (0.86-1.18)	0.93
HDL cholesterol			0.85 (0.70-1.03)	0.09
Efflux capacity	- }		0.75 (0.63-0.90)	0.002
	0.5 1.0	2.0	4.0	

Odds Ratios for Coronary Artery Disease According to Efflux Capacity and Selected Risk Factors ⁽¹⁾

The logistic-regression model was also adjusted for age and sex. Odds ratios for continuous variables are per 1-SD increase.

Improving HDL functionality may be more beneficial than simply increasing HDL-C concentrations.

Meta-analysis shows an association between 1SD increase in CEC and major cardiovascular events (MACE) of 0.86

Soria-Florido et al. Atherosclerosis 2020;302:36-42

Inflammation (LPS infusion) changes HDL composition and lowers cholesterol efflux capacity

de la Llera Moyaa M. et al Atherosclerosis 2012;222:390-394

Physical inactivity lowers cholesterol efflux capacity

Bedrest O Bedrest plus RVE Pre-bedrest baseline b 1.5change over baseline ³H] - cholesterol efflu p=0.016p=0.004 p=0.001 1.0 0.5 Day 21 Day 7 Recovery

Trakaki. et al Sci Rep 2020;10:15001

4 weeks high dose EPA (1.8 g/d) improves cholesterol efflux capacity in dyslipidemic subjects

Tanaka. et al atherosclerosis 2014;237:577-583

Increased consumption of olive oil, nuts, legumes, whole grains and Fish promotes HDL functions in high CVD risk subjects

Table 1. Association between increases in the consumption of different food items and changes in HDL-related traits (in %).

Variables ^{a)}	\uparrow 10 g d^{-1} of virgin olive oil		↑ 30 g d ⁻¹ of nuts		↑ 25 g d ⁻¹ of legumes		↑ 25 g d ⁻¹ of	whole grains	↑ 25 g d ⁻¹ of fish	
	Raw model	Adjusted model	Raw model	Adjusted model	Raw model	Adjusted model	Raw model	Adjusted model	Raw model	Adjusted model
Change in HDL cholesterol	—0.057 [—0.70; 0.59]	0.005 [0.76; 0.77]	1.43 [1.03; 3.90]	1.66 [-1.31; 4.62]	3.13* [0.70; 5.58]	2.60* [0.18; 5.03]	0.25 [—0.40; 0.90]	0.26 [—0.39; 0.91]	— <mark>1.17*</mark> [—2.20; —0.15]	-1.14* [-2.21; -0.065]
Change in cholesterol efflux capacity (%)	0.54* [0.036; 1.03]	0.68* [0.084; 1.27]	2.03 [0.043; 4.11]	1.36 [—1.32; 4.05]	0.59 [—1.50; 2.65]	0.82 [—1.31; 2.95]	0.53* [0.018; 1.05]	0.64* [0.12; 1.16]	-0.93* -1.73; -0.12]	1. 11* [1.96; 0.27
Change in HDL capacity to esterify cholesterol (%)	0.33 [—1.01; 1.67]	—0.068 [—1.70; 1.57]	—3.90 [—9.84; 2.04]	—2.03 [—9.93; 5.85]	—0.13 [—7.00; 6.75]	0.78 [—6.55; 8.13]	—0.49 [—1.72; 0.74]	-0.35 [-1.63; 0.93]	—0.46 [—2.65; 1.73]	—0.36 [—2.75; 2.04]
Change in cholesteryl ester transfer protein activity (%)	0.003 [—0.76; 0.76]	0.54 [—0.40; 1.48]	0.63 [—2.75; 4.02]	0.37 [-4.29; 5.01]	—3.35 —7.25; 0.53]	-4.80* [-9.03; -0.57]	0.26 [—0.45; 0.97]	0.24 [—0.52; 0.99]	—1.41* [2.63; —0.18]	—1.63* [—3.00; —0.27]
Change in paraoxonase-1 antioxidant activity (%	2.56*) [0.62; 4.51]	2.09 [—0.33; 4.51]	3.48 [5.37; 12.4]	12.2* [0.13; 24.2]	14.6* [4.25; 24.9]	11.7* [0.44; 22.8]	0.17 [—1.67; 2.01]	-0.13 [-2.08; 1.82]	3.18* [0.003; 6.33]	3.93* [0.40; 7.45]
Change in HDL capacity to promote endothelia release of nitric oxide (%)	0.26 [—0.99; 1.51]	-0.28 [-1.79; 1.23]	2.07 [—2.69; 6.81]	— 1.79 [—7.80; 4.20]	1.37 [—3.53; 6.25]	2.02 [—2.93; 6.95]	0.064 [—1.27; 1.40]	—0.28 [—1.65; 1.08]	1.29 [—0.70; 3.28]	1.88 [—0.19; 3.95]

So far cholesterol efflux capacity seems valid

Cross sectional

Interventions, not fully consistent but seems ok but not yet to endpoints ??

Genetics (mendelian randomization), urgently needed ??

Two attention points:

Difficulty is the variation in assays between labs, there is a clear need for standardization

Other HDL functionalities

Variation in methodology for cholesterol efflux capacity

Talbot et al. Prog Lipid Res 2018;69:21-32

- Cross-sectional, serum **HDL-C** is a strong predictor for future CVD risk.
- Interventions that elevate HDL-C do not lower CVD events and also genetics do not support a causal role in CVD.
- Utilizing **apoA-I** (the major protein in HDL) instead of HDL-C also does not hold. Although it predicts cross-sectional CVD risk and elevations sometimes lower CVD events, genetics again do not support a causal role.
- Utilizing **HDL functionality** is nowadays the most valid paradigm. There are different definitions of HDL functionality, but **cholesterol efflux capacity** is most closely linked to its postulated function.
- Indeed cholesterol efflux capacity predicts CVD risk cross-sectional. It can be modified by pharmacological and lifestyle based interventions. But there are no studies yet that link a better cholesterol efflux capacity with endpoints and genetic studies are lacking.
- Attention points relate to the variation in cholesterol efflux assays, and maybe we have not choosen the right HDL functionality.

Wel of geen HDL-C in het cardiovasculaire risicoprofiel

Prof Physiology of Nutrition

Department of Nutrition and Movement Sciences School for Nutrition and Translational Research in Metabolism (NUTRIM) Maastricht University, The Netherlands

Member Dutch Academy of Nutrition Sciences

