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ABSTRACT: Cardiorenal syndrome encompasses a spectrum of 
disorders involving both the heart and kidneys in which acute or 
chronic dysfunction in 1 organ may induce acute or chronic dysfunction 
in the other organ. It represents the confluence of heart-kidney 
interactions across several interfaces. These include the hemodynamic 
cross-talk between the failing heart and the response of the kidneys 
and vice versa, as well as alterations in neurohormonal markers 
and inflammatory molecular signatures characteristic of its clinical 
phenotypes. The mission of this scientific statement is to describe the 
epidemiology and pathogenesis of cardiorenal syndrome in the context 
of the continuously evolving nature of its clinicopathological description 
over the past decade. It also describes diagnostic and therapeutic 
strategies applicable to cardiorenal syndrome, summarizes cardiac-
kidney interactions in special populations such as patients with diabetes 
mellitus and kidney transplant recipients, and emphasizes the role of 
palliative care in patients with cardiorenal syndrome. Finally, it outlines 
the need for a cardiorenal education track that will guide future 
cardiorenal trials and integrate the clinical and research needs of this 
important field in the future.
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The nuanced and highly interdependent relationship between the kidney and 
the heart was described as early as 1836 by Robert Bright, who outlined the 
significant cardiac structural changes seen in patients with advanced kidney 

disease. 1 Since then, numerous advances have been made in summarizing the car-
diorenal link in terms of hemodynamic phenotypes, pathophysiology, therapeutic 
options, and clinical outcomes. The overlap of cardiovascular and kidney disease ex-
tends across several interfaces. These include the hemodynamic interactions of the 
heart and kidney in heart failure, the impact of atherosclerotic disease across both 
organ systems, neurohormonal activation, cytokines, the biochemical perturbations 
across the anemia–inflammation–bone mineral axis in chronic kidney disease (CKD), 
and structural changes in the heart unique to kidney disease progression. However, 
the term cardiorenal syndrome (CRS) encompasses a spectrum of disorders involv-
ing both the heart and kidneys in which acute or chronic dysfunction in 1 organ 
may induce acute or chronic dysfunction in the other organ. This scientific state-
ment focuses primarily on the definition of, pathophysiology of, and diagnostic 
and therapeutic strategies in CRS. It also summarizes cardiorenal interactions in 
special populations such as patients with diabetes mellitus and kidney transplant 
(KT) recipients. Finally, it outlines the need for comprehensive cardiorenal trial end 
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points and the scope of a dedicated cardiorenal educa-
tion track that will encapsulate the clinical and research 
needs of this important field for the future.

METHODOLOGY
The need for a comprehensive overview of the epide-
miology of, pathophysiology of, diagnostic tools in, and 
therapeutic options for CRS was identified by the Council 
on the Kidney in Cardiovascular Disease of the American 
Heart Association (AHA). A writing group was commis-
sioned to review the current literature and to develop an 
expert-based consensus summary on CRS. Members of 
the writing group were chosen for their expertise in heart 
failure, kidney disease, metabolic factors, and therapeutic 
strategies in the management of CRS. The writing group 
held a series of teleconferences and web-based com-
munications from October 2017 tor2018. A manuscript 
outline was developed on the initial conference call, with 
individual section reviews being assigned to authors on 
the basis of their expertise. All authors had continuous 
access to the working document to provide input, and 
each section editor provided critical review and revisions.

The writing group used MEDLINE (1966–pres-
ent) and the Cochrane Central Register of Controlled 
Trials as the primary sources for the literature search, 
which was limited to human subjects and the English 
language. Related article searches were conducted in 
MEDLINE to find additional relevant articles. In addition, 
writing group members recommended articles outside 
the scope of the formal searches.

Key relevant search words and Medical Subject 
Heading descriptors included kidney disease, renal insuf-
ficiency, chronic renal/chronic kidney, acute kidney 
injury, end-stage renal or end-stage kidney disease, albu-
minuria, congestive/myocardial/heart failure, cardiomy-
opathy, cardiorenal, predialysism, and ultrafiltration. Key 
search abbreviations included CRS, CKD, CRF, CRD, AKI, 
RI, WRF, KT, CRT, ICD, CRT-D, ACEi/ARB, MRA, BB, ARNI, 
DM, T1DM, T2DM, SGLT-2 inhibitors, GLP-1 agonists, 
DPP-4 inhibitors, HF, HFrEF, HFpEF, and UF. (A full list of 
abbreviations, including search terms used in the manu-
script, is available as an Online Appendix.) Finally, find-
ings from conference proceedings, medical textbooks, 
and relevant online data sources were also reviewed.

Certain topics within this statement may have been 
reviewed in other clinical practice guidelines and sci-
entific statements published by other working groups, 
including AHA/American College of Cardiology task 
forces. When appropriate, these relevant guidelines 
have been referenced without the need to reiterate 
recommendations contained in those guidelines or 
statements. Suggestions/considerations agreed on by 
consensus within the writing group are included in spe-
cific areas when there is a desire to provide some guid-
ance to the cardionephrology community.

CONFLICT OF INTEREST
The AHA has a strict conflict-of-interest policy for all 
writing groups Each writing group member declared 
all relevant current conflicts, and >50% of the writing 
group were free of relevant conflicts. The chair and vice 
chair did not have any relevant industry-related con-
flicts. The writing group members updated an electron-
ic file of conflict-of-interest data from the beginning 
of the work until the article was published, and each 
member reported any new relevant conflicts at the be-
ginning of each teleconference. See the Writing Group 
Disclosures table for details on individual conflict-of-
interest reporting.

DEFINITION AND PHENOTYPES OF CRS
The first attempt at formally defining CRS came from 
the Working Group of the National Heart, Lung, and 
Blood Institute in 2004, which defined CRS as the re-
sult of interactions between the kidneys and other cir-
culatory compartments that increase circulating volume, 
which exacerbates the symptoms of heart failure (HF) 
and disease progression.2 The National Heart, Lung, 
and Blood Institute’s definition also stated that at its ex-
treme, cardiorenal dysregulation leads to CRS, in which 
therapy to relieve congestive symptoms of HF is limited 
by further decline in renal function. This cardiocentric 
definition remains the cornerstone of CRS as commonly 
observed in the setting of acute decompensated HF, 
now called acute HF (AHF). Recognizing a wider clinical 
spectrum that may represent cardiorenal dysregulation, 
the Acute Dialysis Quality Initiative outlined a consensus 
approach in 2008 that phenotyped CRS into 2 major 
groups, cardiorenal and renocardiac syndromes, based 
on the primum movens of the disease process. 3,4 This 
was further grouped into 5 subtypes based on disease 
acuity and sequential organ involvement, which are out-
lined in Table 1. The goals of this consensus definition 
of CRS were to facilitate reliable characterization of the 
clinical presentation of cardiorenal dysregulation for di-
agnostic and therapeutic purposes, to streamline inclu-
sion criteria in epidemiological studies, to identify target 
treatment populations, and to develop novel diagnostic 
tools for the diagnosis and management of CRS.

The Acute Dialysis Quality Initiative classification 
of CRS overcame some of the initial ambiguity in de-
fining CRS and helped clinicians deliver phenotype-
based goal-directed therapies for CRS at the bedside.  
Although simplifying the clinical approach to CRS, it 
also recognized the inevitability of overlap between dif-
ferent phenotypes and the evolution of 1 subtype to 
the other during disease progression. However, in clini-
cal practice, identifying the initial insult and subsequent 
events that result in decompensated acute or chronic 
CRS/renocardiac syndrome can be challenging. Several 
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complex interconnected pathways culminate in CRS,  
including diabetes mellitus, hypertension, HF, athero-
sclerosis, endothelial cell dysfunction, anemia and dis-
orders of iron metabolism, and chronic inflammation, 
many of which do not have well-defined temporal 
progression patterns. To this end, an alternative clas-
sification of CRS based on the various clinical manifes-
tations of CRS regardless of the initial organ of injury 
was proposed by Hatamizadeh et al 5 that encompasses 
manifestations of hemodynamic compromise, uremic 
or vascular manifestations, neurohumoral disturbances, 
anemia/iron and bone mineral metabolism perturba-
tions, and the malnutrition inflammation complex.

Determining the significance of fluctuations in kidney 
function that meet the criteria for acute kidney injury 
(AKI) in the context of CRS represents a core challenge 
in standardizing its definition and phenotypes, particu-
larly in the setting of AHF, in which decongestive thera-
pies may complicate the assessment of biomarkers of 
renal function (especially for serum creatinine and urine 
output). Historically, the description of an acute decline 
in kidney function in the CRS literature has included the 
use of inconsistent terms such as kidney impairment 
and renal insufficiency, thus limiting accurate quantifi-
cation of kidney injury and its clinical significance in a 
consistent fashion. Initial efforts toward standardizing 
the definition of AKI through the use of the RIFLE (risk, 
injury, failure, loss of kidney function, and end-stage 
kidney disease [ESKD]) criteria came from the Acute Di-
alysis Quality Initiative in 2002 6 and were subsequently 
modified by the Acute Kidney Injury Network. 7 The 2012 
Kidney Disease: Improving Global Outcomes guideline 
on the evaluation and management of AKI harmonized 
these 2 sets of criteria to allow early AKI detection, to 
permit epidemiological comparisons, and to standardize 
entry criteria and end points in clinical trials. 8

The standardized criteria for the diagnosis of AKI 
greatly improved the sensitivity of detection of AKI with 
emphasis on small fluctuations in serum creatinine and 
urine output; however, they may not represent true renal 
tubular injury when observed in the context of diuresis 

in the setting of AHF. Ahmad et al 9 demonstrated that 
tubular injury quantified by validated urine biomarkers 
was not associated with worsening renal function esti-
mated with cystatin C (CysC) with aggressive diuresis in 
patients with AHF. These findings suggest that small to 
moderate fluctuations in measurements of renal func-
tion with clinically available biomarkers (such as serum 
creatinine) in the context of aggressive diuresis in AHF 
may be dissimilar from other causes of AKI such as sep-
sis or drug-induced nephrotoxicity. Thus, underpinning 
the difference between true AKI with evidence of tubu-
lar injury and pseudo-AKI or worsened renal function 
from functional changes in estimated glomerular filtra-
tion rate (eGFR) is critical in preventing suboptimal de-
livery of appropriate goal-directed therapies such as de-
congestion and renin-angiotensin-aldosterone system 
(RAAS) inhibition in CRS. 10 The cornerstone in making 
this distinction between AKI and worsened renal func-
tion (without injury) in the setting of AHF, azotemia, 
and declining urine output rests on a combination of 
clinical assessment of perfusion status, relevant hemo-
dynamic parameters (invasive and noninvasive), detec-
tion of bedside markers of intrinsic renal injury evident 
on urine microscopy, and a thorough investigation of 
alternative explanations for worsening renal function. 
In the absence of evidence for intrinsic causes of kidney 
injury, small fluctuations in serum creatinine in the con-
text of delivering appropriate goal-directed therapies in 
AHF may not have the same negative prognostic impact 
of AKI as seen with alternative causes 9 and may rep-
resent the effect of relative plasma underfilling or the 
therapeutic intended target effects of medical therapies 
for AHF, which are outlined in subsequent sections. To 
this end, the incorporation of novel biomarkers of car-
diac and kidney injury to delineate the presence (or ab-
sence) of organ damage and to guide therapeutic strat-
egies in CRS represents a new dimension in improving 
the accuracy of the definition of CRS and its treatment 
targets for the future.

Table 1. Classification of CRS Based on the Consensus Conference of the Acute Dialysis Quality Initiative

Phenotype Nomenclature Description Clinical Examples

Type 1 CRS Acute CRS HF resulting in AKI ACS resulting in cardiogenic shock and AKI, AHF resulting 
in AKI

Type 2 CRS Chronic CRS Chronic HF
resulting in CKD

Chronic HF

Type 3 CRS Acute renocardiac 
syndrome

AKI resulting in AHF HF in the setting of AKI from volume overload, 
inflammatory surge, and metabolic disturbances in uremia

Type 4 CRS Chronic renocardiac 
syndrome

CKD resulting in chronic HF LVH and HF from CKD-associated cardiomyopathy

Type 5 CRS Secondary CRS Systemic process resulting in HF 
and kidney failure

Amyloidosis, sepsis, cirrhosis

ACS indicates acute coronary syndrome; AHF, acute heart failure; AKI, acute kidney injury; CKD, chronic kidney disease; CRS, cardiorenal 
syndrome; HF, heart failure; and LVH, left ventricular hypertrophy.

D
ow

nloaded from
 http://ahajournals.org by on July 30, 2020



Rangaswami et al Cardiorenal Syndrome

Circulation. 2019;139:e840–e878. DOI: 10.1161/CIR.0000000000000664 April 16, 2019 e843

CLINICAL STATEM
ENTS  

AND GUIDELINES

PATHOPHYSIOLOGICAL MECHANISMS 
IN CRS
The conventional explanation for the development of 
CRS in the setting of a cardiocentric primum movens 
focuses on the inability of the failing heart to generate 
forward flow, thus resulting in prerenal hypoperfusion. 
Inadequate renal afferent flow activates the RAAS axis, 
the sympathetic nervous system, and arginine vaso-
pressin secretion, leading to fluid retention, increased 
preload, and worsening pump failure. 11 However, the 
presence of a low-flow state only partly explains the 
pathophysiology of CRS. The ADHERE registry (Acute 
Decompensated Heart Failure National Registry) noted 
that the incidence of rising serum creatinine was similar 
among patients with AHF and reduced versus preserved 
systolic function. 12 In addition, many patients hospital-
ized with evidence of acute CRS have preserved or even 
elevated blood pressure and normal left ventricular (LV) 
ejection fraction (EF). 13 The kidneys are not first in line 
for delivery of oxygenated blood, yet they receive a dis-
proportionately large fraction (25%) of cardiac output 
(CO) because they are a low-resistance circuit. The dif-
ference between arterial driving pressure and venous 
outflow pressures must remain sufficiently large for 
adequate renal blood flow and glomerular filtration. 
In this context, the concept of elevated central venous 
pressures (CVPs) resulting in renal venous hypertension, 
increased renal resistance, and ultimately impaired in-
trarenal blood flow has been shown in early experimen-
tal models 14 and in more contemporary experiences in 
patients with AHF using invasive hemodynamic moni-
toring. 15,16 Merrill 17 elegantly demonstrated large reduc-
tions in renal blood flow in subjects with decompensat-
ed HF with relative preservation of glomerular filtration 
rate (GFR). This was explained by a concomitant in-
crease in filtration fraction derived from elevated intra-
glomerular pressures from efferent arteriolar constric-
tion in the setting of elevated renin levels. However, in 
severe decompensated HF with markedly elevated renal 
venous pressures and decreased renal blood flow, the 
compensatory increase in filtration fraction is lost and 
results in declining GFR. 18 In this setting, the decrease in 
intraglomerular pressures and reduced GFR are driven 
by preglomerular vasoconstriction from extreme levels 
of RAAS and neurohumoral activation. In addition, the 
enhanced activation of the neurohumoral axis results in 
increased proximal tubular sodium and water reabsorp-
tion to maintain effective plasma volumes, eventually 
resulting in oliguria and worsening congestion. 19 These 
renal hemodynamic regulatory mechanisms are also the 
rationale behind the elevations in serum creatinine from 
decreased glomerular hydraulic pressures seen with the 
administration of RAAS inhibitors, with little changes in 
renal blood flow per se, and translate into true worsen-
ing of renal function only when reductions in mean ar-

terial pressure exceed renal autoregulatory capacity. 18,20 
This is the basis for the elevations in serum creatinine 
seen with RAAS inhibition in trials such as CONSEN-
SUS (Cooperative North Scandinavian Enalapril Survival 
Study), which is discussed further in the RAAS Inhibi-
tion in Chronic CRS section on pharmacotherapies. 21  
Finally, the low-resistance nature of the renal vascula-
ture and parenchyma and the very low oxygen tension 
in the outer medulla also explain the unique sensitiv-
ity of the kidneys to hypotension-induced injury. Thus, 
both hemodynamic instability and antecedent hypoten-
sion should be considered in the consultative evaluation 
of a patient with developing CRS.

In a post hoc analysis of the ESCAPE trial (Evaluation 
Study of Congestive Heart Failure and Pulmonary Artery 
Catheterization Effectiveness), right atrial (RA) pres-
sure was the only hemodynamic parameter associated 
with baseline renal dysfunction. 22 This observation was 
also confirmed in a broad spectrum of cardiovascular  
patients undergoing right-sided heart catheterization, 
in whom increased CVP was associated with reduced 
GFR and all-cause mortality. 23 Along the same lines, 
elevated intra-abdominal pressures (IAPs) in the set-
ting of AHF may contribute to renal dysfunction by 
causing renal compression and reduced perfusion. 24  
Hemodynamic metrics reflective of right ventricular (RV) 
function such as the RV stroke work index may have 
prognostic impact on kidney function in HF (including 
in patients with HF with preserved ejection fraction [HF-
pEF]), thus underscoring the influence of RV function 
on renal hemodynamics. 25 However, data on the neu-
rohumoral perturbations and sodium and water reten-
tion in isolated RV failure models in humans are scarce. 
Early experimental models inducing RV failure by grad-
ed valvular damage showed a decrease in renal blood 
flow, preserved GFR, and intense salt and water reten-
tion. 26 Other investigators have shown that despite 
the presence of pulmonary baroreceptors, when CO 
is kept constant, pulmonary arterial (PA) distension did 
not have a direct effect on renal hemodynamics. 27 The  
renal hemodynamic changes and the retention of  
sodium and water observed in patients with PA hyper-
tension therefore may be mediated by systemic rather 
than PA baroreceptors, as has been shown in other  
edematous states. 28 Thus, in the clinical context of CRS, 
the relative effects of declining RV function and elevated 
RV afterload on renal hemodynamics are less clear. The 
cardiorenal neural reflexes initiating from the PA circula-
tion or the RV have not been well delineated, and the  
elevated levels of natriuretic peptides seen with PA hyper-
tension/RV dysfunction do not account for the sodium 
avid state seen in RV failure, albeit their negative prog-
nostic significance. 29,30 Other mechanisms of the direct 
effect of RV dysfunction on renal hemodynamics include 
interventricular asynchrony and pericardium-mediated 
RV-LV interactions. This is a consequence of prolonged 
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contraction of the RV free wall seen with RV pressure 
overload exceeding LV pressures in early diastole, re-
sulting in paradoxical septal movement, which causes 
reduced LV end-diastolic filling. 31,32 Finally, although 
RV function is a central determinant of CRS hemody-
namics, surgical models such as the Fontan procedure 
demonstrate the ability to maintain CO and functional 
capacity by bypassing the RV in the presence of nor-
mal LV function and the absence of pulmonary vascular  
disease. 33,34

Several nonhemodynamic pathways that exacerbate 
cardiac or kidney injury are operative in CRS, central 
to which are activation of the sympathetic nervous sys-
tem, chronic inflammation, imbalance in the proportion 
of reactive oxygen species/nitric oxide production, and 
persistent RAAS activation. 35 Circulating levels of TNF-
α (tumor necrosis factor-α), IL-1 (interleukin-1), and 

IL-6 (interleukin-6), which are elevated in experimen-
tal models of AKI, have direct cardiodepressant effects 
such as a reduction in LVEF. Uremic cardiomyopathy 
(type 4 CRS) is characterized by significant burden of LV 
hypertrophy on which FGF-23 (fibroblast growth fac-
tor-23) has recently been shown to have an indepen-
dent causal effect. 36 Because the hypertrophy of the LV 
is associated with a reduction in capillary density, partic-
ularly in the central endocardium, it is conceivable that 
microvascular ischemia plays a role in the progression of 
uremic cardiopathy. Endothelial stretch from peripheral 
venous congestion causes conversion of vascular endo-
thelium from a quiescent to a proinflammatory pheno-
type, highlighting the importance of decongestion in 
CRS beyond its hemodynamic effects. 37 Finally, data are 
emerging on the cross-talk between cardiac and kidney 
dendritic cells, which play a central role in innate and  

Figure 1. Pathophysiology of neurohumoral and inflammatory pathways involved in cardiorenal syndrome.  
α/π GST indicates α/π glutathione S-transferase; Alk Phos, alkaline phosphatase; ANP, atrial natriuretic peptide; AVP, arginine vasopressin; BNP, B-type natriuretic 
peptide; Cr, creatinine; GFR, glomerular filtration rate; GGT, γ-glutamyl transferase; IL-18, interleukin-18; KIM-1, kidney injury molecule-1; LDH, lactate dehydroge-
nase; L-FAP, L-type fatty acid protein; NAG, N-acetyl-β-d-glucosaminidase; and NGAL, neutrophil gelatinase-associated lipocalin. Reprinted from Ismail et al 39 with 
permission from Elsevier. Copyright © 2012, Elsevier.
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adaptive immune responses in the context of CRS. 38 
The key pathophysiological pathways involved in CRS 
are outlined in Figure 1. 39

DIAGNOSTIC STRATEGIES IN CRS
HF is a complex mechanical and neurohumoral syn-
drome resulting in stasis of blood in the lungs and  
periphery, causing the cardinal features of effort intol-
erance and edema. Diagnosis of HF requires the pres-
ence of signs and symptoms, along with evidence of 
a structural or functional cardiac abnormality, 40 and in 
CRS, this requirement extends to the heart and kidneys. 
Several diagnostic tools help establish the structural 
and functional derangements characteristic of CRS,  
including biomarkers, noninvasive imaging modalities, 
invasive hemodynamic monitoring, and adjuvant vol-
ume measurement techniques, which are summarized 
in the following sections.

Biomarkers
Biomarkers of cardiac and kidney injury may provide valu-
able information when applied to the clinical context of 
CRS and can serve to indicate early cardiac or renal injury, 
the repair process, and long-term sequelae. 41 They repre-
sent an opportunity to prognosticate CRS, to discriminate 
between CRS phenotypes, and to serve as markers for tar-
geted therapeutic interventions. Although biomarkers of 
myocardial injury (troponin) and wall tension (BNP [B-type 
natriuretic peptide]/NT-proBNP [N-terminal pro-BNP]) are 
routinely used in clinical practice, biomarkers of AKI are 
emerging as an additional dimension in diagnostic algo-
rithms. The definitions of AKI used today are linked to chang-
es in creatinine or urine output, resulting in a significant 
time lag of 24 to 48 hours to institute corrective measures.  
Table 2 summarizes key biomarkers of CRS based on site 
of origin and diagnostic and prognostic value in AKI, HF, 
and, when applicable, CRS.

Renal Biomarkers in CRS
Markers of Glomerular Filtration and Integrity
CysC and albuminuria represent biomarkers of glomer-
ular filtration and integrity in CRS. CysC is a 13-kDa cys-
teine protease, ubiquitous in all nucleated cells, that is 
produced at a constant rate, freely filtered, completely 
reabsorbed, and not secreted in renal tubules. In a sub-
set of patients with chronic HF in the Cardiovascular 
Health Study, the highest quartile of serum CysC (>1.55 
mg/L) was associated with twice the risk of cardiovas-
cular mortality adjusted for baseline characteristics. 42 In 
patients presenting with AHF, serum CysC was a strong 
indicator of rehospitalization and short- and long-term 
mortality 43,44 and had additive prognostic value when 
combined with other CRS biomarkers such as NT-proB-
NP and cardiac troponin T. 45 Similarly, albuminuria had 

a strong prognostic value for all-cause mortality, cardio-
vascular death, and readmission in patients with HF in 
substudies of 3 major HF trials: CHARM (Candesartan 
in Heart Failure Assessment of Reduction in Mortality 
and Morbidity), GISSI-HF (Gruppo Italiano per lo Studio 
della Sopravvivenza nella Insufficienza Cardiaca–Heart 
Failure), and Val-HeFT (Valsartan in Heart Failure). 46–49 
It is important to note that biomarkers of glomerular 
integrity such as serum creatinine and CysC have differ-
ing sources of bias when estimating GFR, particularly in 
advanced CRS. 50,51 To this end, measurement of tubu-
lar secretory clearance may provide different metabolic 
profiles of retained solutes eliminated by tubular secre-
tion and filtration (eg, indoxyl sulfate and p-cresyl sul-
fate) and thus refine the approach to quantification of 
kidney function and drug dosing and improve predic-
tion of cardiovascular disease and kidney outcomes. 52

Markers of Renal Tubular Injury
Urine microscopy is a readily available clinical biomarker 
that has diagnostic value in distinguishing an intrinsic 
cause of AKI from functional changes in serum creati-
nine in the setting of AHF. In addition, a urine sediment 
severity score based on the number of renal tubular 
epithelial cells and granular casts was shown to have 
prognostic value in the prediction of worsening AKI 
during hospitalization. 53 Several novel urinary biomark-
ers have shown promise in identifying tubular injury in 
AKI; some assays are available for in vitro use and are 
briefly described below.

NGAL (neutrophil gelatinase-associated lipocalin), a 
25-kDa protein found in neutrophil granules that is se-
creted by renal tubular epithelium, myocardial cells, and 
other specific organ sites, has been extensively studied 
in CRS and has diagnostic and prognostic value in AHF 
and chronic HF. NGAL is the most upregulated protein 
produced by the kidneys in the setting of AKI. A meta-
analysis of 10 studies involving ≈2000 patients with 
predominantly CRS identified early serum and urine 
NGAL measurements as predictors of dialysis and death 
with a pooled area under the curve of 0.78 and 0.75, 
respectively. 54 Serial measurements of NGAL in AHF  
increase its predictive value for AKI, with the change in 
NGAL from baseline to peak producing an area under 
the curve of 0.91 compared with 0.69 for NGAL at ad-
mission only. 55 NGAL assays are available for clinical use 
outside but not within the United States.

The combination of TIMP-2 (tissue inhibitor of metal-
loproteinase-2) and IGFBP7 (insulin-like growth factor–
binding protein 7), both tubular biomarkers involved in 
G1 cell cycle arrest during the early phase of cell injury, is 
available for clinical use in the United States. Kashani et 
al 56 compared the performance of TIMP-2 and IGFBP7 
in combination with other biomarkers of AKI in the 
SAPPHIRE validation cohort (Systolic and Pulse Pressure 
Hemodynamic Improvement by Restoring Elasticity) in 
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728 critically ill patients without evidence of AKI at en-
rollment. In this study, the combination of urine TIMP-2 
and IGFBP7 was superior to previously described mark-
ers of AKI (P<0.002). Although the performance of 
TIMP-2 and IGFBP7 has been validated in several set-
tings of AKI, the relationship between cell cycle arrest 
markers and CRS has not yet been described, and there 
are no reported studies of this biomarker combination 
measured serially in AHF. The promising markers of tu-
bular injury in AKI and their specific role in CRS (if avail-
able) are summarized in Table 2.

Urinary biomarkers that correlate with measures of 
congestion such as BNP or NT-proBNP may play a role 
in phenotyping CRS in AHF and guide decongestive 
therapies. 57 Perhaps the most critical role that novel AKI 
markers can have is in their negative predictive value in 
distinguishing functional serum creatinine fluctuations 
from true AKI. This distinction at the bedside may influ-

ence or even guide the delivery of goal-directed therapy 
in CRS in the future; however, tubular biomarkers are 
influenced by the degree of baseline functioning renal 
tissue and thus may be inaccurate at low filtration rates, 
representing an important limitation of these markers. 
Finally, biomarkers that represent the transition to chro-
nicity on the AKI-CKD continuum may help phenotype 
the shift from acute to chronic CRS and assist with ap-
propriate clinical therapies and prognostication.

Cardiac Biomarkers in CRS
The “2017 ACC/AHA/HFSA Focused Update of the 
2013 ACCF/AHA Guideline for the Management of 
Heart Failure” reiterated the existing Class 1A recom-
mendation for the use of BNP and its inactive cleav-
age proBNP in the diagnosis/exclusion of HF, as well 
as establishing prognosis and quantifying severity in 
AHF and chronic HF. 58 Patients with CKD have higher 

Table 2. Biomarkers of Renal and Cardiac Injury Based on Site of Origin and Diagnostic and Prognostic Roles in AKI, HF, and CRS

Biomarkers Characteristics/Site of Origin Diagnostic Value Prognostic Value

Cardiac biomarkers

 cTn Marker of myocardial injury ACS ACS, HF, CKD

 BNP Marker of myocardial stretch HF, ACS, CRS HF, CRS

 sST2 Member of IL-1 family of receptors … HF, CRS

 Galectin-3 β-Galactoside binding lectin (intracellular and 
extracellular)

… HF, CRS

Kidney biomarkers

 Biomarkers of glomerular integrity    

  Serum creatinine Skeletal muscle AKI, CRS HF, CRS

  CysC All nucleated cells CRS CRS

  Albuminuria Marker of glomerular integrity/PCT disruption CRS CRS

 Biomarkers of tubular injury    

  TIMP*IGFBP7 Involved in G1 cell cycle arrest; may stimulate renal 
epithelium in an autocrine and paracrine fashion 
and sensitize for upcoming insults

AKI AKI recovery

  Serum NGAL 25-kDa protein found in neutrophil granules; 
secreted by myocardium, renal tubules, activated 
immune cells, hepatocytes, lung, and colon

AKI CRS

  Urine NGAL Loop of Henle, collecting ducts AKI, CRS CRS

  NAG PCT CRS, AKI CRS

  KIM-1 Type 1 cell membrane glycoprotein expressed in 
regenerating PCT epithelium

AKI CRS

  IL-18 Cytokine mediating inflammation and AKI through 
the nuclear factor-κB pathway

AKI CRS

  L-FABP Renal PCT AKI …

  H-FABP Cardiomyocytes, distal tubule HF, CRS …

  Urine angiotensinogen … AKI, CRS CRS

  α-1 Microglobulin Synthesized in liver; freely filtered through 
glomerular capillaries and reabsorbed by PCT

AKI AKI recovery

ACS indicates acute coronary syndrome; AKI, acute kidney injury; BNP, B-type natriuretic peptide; CKD, chronic kidney disease; CRS, 
cardiorenal syndrome; cTn, cardiac troponin; CysC, cystatin C; ellipses (...), data not available or reported.; HF, heart failure; H-FABP, heart-type 
fatty acid–binding protein; IGFBP7, insulin-like growth factor protein 7; IL, interleukin; KIM-1, kidney injury molecule-1; L-FABP, liver-type fatty 
acid–binding protein; NAG, N-acetyl-κ-d-glucosaminidase; NGAL, neutrophil gelatinase-associated lipocalin; PCT, proximal convoluted tubule; 
sST2, soluble suppressor of tumorigenicity; and TIMP, tissue inhibitor of metalloproteinase. 
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baseline BNP levels compared with matched patients 
with normal renal function because of impaired renal 
clearance (more notably with NT-proBNP), as well as 
chronic pressure/volume overload and CKD-associated 
cardiomyopathy. 59,60 BNP levels are also significantly  
elevated in patients with evidence of CRS compared 
with patients with AHF without renal impairment. 61 
Future studies are necessary to determine the inter-
pretation of fluctuations in natriuretic peptide levels in 
the context of administration of angiotensin receptor 
blocker (ARB)/neprilysin inhibitor therapy, especially in 
patients with CRS. 62

ST2 (suppressor of tumorigenicity 2) is a decoy pro-
tein produced by the endothelial cells lining the LV and 
aortic outflow tract in response to biomechanical strain. 
ST2 binds to the IL-33 (interleukin-33) receptor on car-
diomyocytes and satellite cells in the heart, and instead 
of receiving favorable signal transduction, the ST2  
effect results in myocyte dysfunction and tissue fibrosis. 
ST2 measurements offer incremental value to natriuretic 
peptides levels in predicting HF-related deaths and hospi-
talizations and notably are not affected by renal function. 58

Galectin-3 is a member of the β-galactoside–
binding lectin family that is synthesized by cardiac 
macrophages and known to interact with specific ex-
tracellular matrix proteins, including laminin, synexin, 
and integrins. In a recent study of 232 patients with 
New York Heart Association (NYHA) class III or IV HF, 
Lok et al 63 used NT-proBNP and eGFR to adjust for  
severity of heart disease and degree of renal dysfunc-
tion and demonstrated that serum galectin-3 levels 
were independent predictors of cardiovascular mor-
tality. 64 In a secondary analysis of the CORONA trial 
(Controlled Rosuvastatin Multinational Trial in Heart 
Failure) and COACH trial (Coordinating Study Evalu-
ating Outcomes of Advising and Counseling Failure), 
patients whose galectin-3 levels increased by >15% 
over 3 to 6 months had a significantly increased  
adjusted risk for all-cause mortality and hospitalization 
for HF (HHF). 65 Tang et al 66 reported in a single-center 
study of subjects with chronic HF that higher galec-
tin-3 levels were associated with worse renal function 
and poorer survival and that galectin-3 remained an 
independent predictor of all-cause mortality in a multi-
variate analysis of several factors, including eGFR.

High-sensitivity cardiac troponins I and T are estab-
lished diagnostic and prognostic markers in acute myo-
cardial infarction (MI). In addition to their diagnostic 
value, cardiac troponins have prognostic implications 
when elevated in acute decompensated HF even in the 
absence of myocardial ischemia or underlying coro-
nary artery disease, and elevated levels are associated 
with a higher risk of death. 58 The prevalence of el-
evated cardiac troponins increases with declining GFR, 
and a sustained elevation is associated with a higher 
mortality risk. 67

Imaging Modalities
Up to 40% of patients hospitalized for AHF present 
with a type 1 CRS phenotype. 68 Reduction in renal per-
fusion pressure from elevated CVP plays a critical role, 
along with reduced CO in the pathogenesis of AKI in 
CRS. 15 Noninvasive imaging modalities play an impor-
tant role in establishing markers of venous conges-
tion and impaired forward flow in CRS and are readily  
accessible clinical tools at the bedside. Echocardiog-
raphy may help in diagnosing the congestive state by 
hemodynamic parameters, including CVP, systolic PA 
pressure, pulmonary capillary wedge pressure/left atrial 
pressure, and CO. 69 Besides CVP, other useful echocar-
diographic measurements include lateral and septal 
wall longitudinal motion (E′) in relation to the mitral 
inflow velocity (E). The E/E′ ratio directly correlates with 
pulmonary capillary wedge pressure, with an E/E′ >15 
correlating to a pulmonary capillary wedge pressure of 
≥18 mm Hg. 70,71 In addition, echocardiography carries 
prognostic value specific to phenotypes in CRS. In a 
retrospective cohort study in a large healthcare sys-
tem, acute CRS (types 1 and 3) was associated with 
the highest risk of death compared with CKD without 
CRS (hazard ratio [HR], 3.13 [95% CI, 2.72–3.61]). 72 
Patients with CRS type 4 had better survival than  
patients with acute CRS (HR, 0.48 [95% CI, 0.37–
0.61]). Sixteen percent of patients with type 2 CRS and 
20% of patients with type 4 CRS developed acute CRS, 
whereas 14% of patients with acute CRS progressed 
to CKD or chronic HF. Decreasing LVEF, increasing PA 
pressure, and higher RV diameter were independently 
associated with higher incidence of CRS.

Renal ultrasonography and intrarenal venous flow 
patterns are emerging tools in identifying renal venous 
congestion and its clinical significance in CRS. Iida et 
al 73 examined intrarenal venous flow patterns mea-
sured by intrarenal Doppler ultrasound that were as-
sociated with RA pressures and correlated strongly with 
clinical outcomes. In their study cohort of 217 patients 
hospitalized with AHF, 54% of subjects exhibited a 
continuous intrarenal venous flow pattern that invari-
ably had low RA pressures (estimated <10 mm Hg) and  
favorable prognosis (>95% survival at 1 year). In contrast, 
about one-quarter of patients with discontinuous intra-
renal venous flow, with either increased RA pressures 
(26%) or monophasic patterns (23%), had the poorest 
prognosis (<40% survival at 1 year). 73 In subjects with 
HF, intravascular expansion results in significant blunt-
ing of renal venous flow before a significant increase in 
cardiac filling pressures is demonstrated and correlates 
with less diuretic efficiency. 74 Other renal hemodynamic 
parameters such as renal arterial resistive index and re-
nal perfusion index, although showing correlation with 
CVP, mean arterial pressures, and effective renal plasma 
flow, have not extended to being predictors of clinical 
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outcomes in CRS. 73 Renal ultrasonography provides 
information on chronicity of disease using renal size, 
echogenicity, cortical thickness, and abnormal cortico-
medullary ratios, which are helpful in identifying pro-
gression from type 1 CRS to a more indolent type 2 CRS 
phenotype or establishing AKI or CKD as the primary 
perturbation in the clinical presentation of CRS. 75

Uremic cardiomyopathy evolves through the course 
of progression of CKD, with subtle alterations in cardiac 
structure occurring even before a clinically significant 
decline in renal function. 76 Speckle echocardiography 
with strain analysis allows a more detailed analysis of 
myocardial systolic function in the setting of normal 
LVEF and may have additive value over echocardio-
graphic assessment of EF, including in uremic cardiomy-
opathy (type 4 CRS). 77 In a study of 40 control subjects 
and 90 patients with CKD across a range of eGFR, LV 
longitudinal systolic strain and early and late diastolic  
strain rates were significantly reduced in patients with 
CKD (−16.9±3.8%, 1.6±0.5%, and 1.3±0.4% in patients  
with CKD versus −22.5±0.6%, 2.3±0.2%, and 1.9±0.1%  
in control subjects; P<0.001 for all), despite overall pres-
ervation of EF. 78 Krishnasamy et al 79 demonstrated that 
global longitudinal strain was a significant predictor of 
all-cause mortality in CKD (HR, 1.08 [95% CI, 1.01–
1.15]) in a single-center experience with 447 subjects.

Cardiac magnetic resonance imaging is the standard 
noninvasive method of assessing ventricular dimen-
sions and function and fibrosis. Myocardial fibrosis 
in patients with uremic cardiomyopathy (type 4 CRS) 
occurs through multiple mechanisms not uniquely  
related to coronary artery disease. Early attempts to 
characterize and quantify myocardial fibrosis in ESKD 
with gadolinium-enhanced cardiac magnetic resonance 
imaging described a high prevalence of late gadolin-
ium enhancement characteristic of coronary artery  
disease but also described a noninfarct pattern typical 
of more diffuse fibrosis. 76 The limitations in the use of 
gadolinium in advanced CKD resulting from the risk 
of nephrogenic systemic fibrosis were overcome in  
2 recent studies that described prolonged native T1  
relaxation time and abnormal global longitudinal strain 
in patients with prevalent HFpEF undergoing hemodial-
ysis compared with control subjects. 80,81 The validation 
of non–gadolinium-based cardiac magnetic resonance 
in advanced CKD opens new possibilities in identifying 
subclinical LV dysfunction and has high potential as a 
tool for future studies in characterizing cardiac struc-
ture in future cardiorenal studies.

Volume Status Determination Strategies 
in CRS
Fluid overload represents a core target for treatment 
in the process of optimizing the vicious cycle of CRS. 
However, the optimal method to assess fluid status and 

to determine dry weight and appropriate decongestion 
in decompensated HF or kidney disease remains an un-
resolved issue. This section describes the role of several 
modalities available in conjunction with clinical assess-
ment of volume status.

Bioimpedance Vector Analysis
Bioimpedance vector analysis (BIVA) is a noninvasive 
bedside volume assessment technique based on the  
electric principle that the body is a circuit with a given 
resistance (opposition of current flow through intra-
cellular and extracellular solutions) and reactance (the 
capacitance of cells to store energy). With BIVA, total 
body water may be measured by placing a pair of elec-
trodes on the dorsum of the wrist and ipsilateral ankle 
and then applying a 50-kHz current to the body. BIVA 
is displayed graphically so that relative hydration is de-
picted as vector length. Shorter vectors are associated 
with volume overload, whereas longer vectors equate 
to volume depletion (Figure 2). BIVA has shown promis-
ing results in distinguishing dyspnea caused by HF from 
other causes in patients presenting to the emergency 
department. 82,83 BIVA has also been combined with 
BNP to guide discharge timing in patients with AHF, 84 
preventing AKI in the setting of high-dose diuretics 
for HF, 85 and prognosticating patients with high risk of  
rehospitalization and cardiovascular mortality. 86,87 In a 
recent study using a body composition analysis based 
on bioimpedance, a derived measure of fluid overload 
was found to be a key management parameter associ-
ated with mortality on both the low and high ends of 
the measurement. 88

Measurement of IAP
In advanced HF, inefficient natriuresis with progressive 
volume overload may ultimately lead to a state of sys-
temic congestion with increased IAP if the capacitance 
function of the splanchnic vasculature is insufficient. 24 
In 60% of patients admitted with AHF, measurements 
of IAP are elevated beyond the baseline value range of 
5 to 7 mm Hg. 24 Bedside noninvasive measurements of 
IAP can be obtained with a urinary bladder catheter 
connected to a transducer. Reversing increased IAP 
by decongestive therapy ameliorates serum creatinine 
in this setting, presumably by alleviating abdominal 
congestion. 89

Relative Blood Volume Monitoring Devices
Devices that monitor relative blood volume have gener-
ated interest in optimizing volume status in decompen-
sated HF. Radiolabeled albumin tracer injections (BVA-
100, Daxor) are commercially available as a measuring 
tool for intravascular blood volume. A wide range of 
total blood volume values were reported in a small co-
hort of patients hospitalized with AHF, with margin-
ally reduced intravascular volume after diuretic therapy  
despite large reductions in body weight. 90 It is unknown 
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whether the addition of blood volume measurement 
devices will affect clinical outcomes in patients with 
AHF in the context of CRS.

Implantable Hemodynamic Monitoring Devices
The CHAMPION trial (CardioMEMS Heart Sensor Allows 
Monitoring of Pressure to Improve Outcomes in NYHA 
Class III Heart Failure Patients) demonstrated a lower 
hospitalization rate (HR, 0.72 [95% CI, 0.59–0.88]) 
and a trend toward lower mortality (HR, 0.68 [95% 
CI, 0.45–1.02]) in 456 patients with HF with reduced  
ejection fraction (HFrEF) in the group who received PA 
pressure–guided HF management versus control sub-
jects. 91 Mean baseline eGFR in this study was 61.1±22.8 
mL/min per 1.73 m2 for the study group and 62.3±23.4 
mL/min per 1.73 m2 for the control group (P=0.69). The 
hospitalization reduction and survival benefit were am-
plified by increasing the application of guideline-directed 
medical therapy. Currently, data on the efficacy of this 

device in patients with CRS or HF with advanced CKD 
are lacking.

An implantable device (Optivol, Medtronic) has been 
used to assess transthoracic impedance as a measure 
of pulmonary fluid status. 92 Direct measurements of in-
trathoracic impedance with an implanted device have 
been shown to have prognostic value in HF. 93 Howev-
er, a reduction in outpatient visits for HF symptoms or 
hospital admissions with the use of device alerts has 
not been demonstrated. 94,95 Specific data on outcomes 
with CRS using implantable intrathoracic impedance 
measurements are currently lacking.

Invasive Hemodynamic Monitoring in CRS
Routine evaluation of invasive hemodynamics has not 
been recommended in AHF because the ESCAPE trial 
did not show a reduction in either mortality or rehos-
pitalizations with such a strategy in patients with equi-
poise for right-sided heart catheterization. 96 A post hoc 

Figure 2. Bioimpedance vector analysis (BIVA) in a patient undergoing ultrafiltration (UF).  
Relative hydration status is determined by the net vector of resistance to an applied current and reactance. Results from BIVA are compared with measurements 
made in healthy reference populations and are plotted as ellipses corresponding to the 50th, 75th, and 90th percentiles. Phase angle corresponds to the portion of 
electric current that is stored and subsequently released in a different phase and depends on cell integrity, cell membrane permeability, and total body water. BNP 
indicates B-type natriuretic peptide; and ECFV, extracellular fluid volume. 
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analysis of the ESCAPE trial showed that a PA cathe-
ter–guided strategy was associated with less average 
increase in creatinine but did not decrease the inci-
dence of defined worsening renal impairment during 
hospitalization or affect renal function after discharge 
relative to clinical assessment alone. 22 Nevertheless, 
PA catheterization might still be warranted in patients 
with CRS who are difficult to treat, aiming to identify 
and treat subclinical congestion while avoiding intra-
vascular underfilling and modulating hemodynamics to 
improve dual organ function. Common relevant sce-
narios include underdiagnosis of culprit hemodynamic 
contributors such as pulmonary hypertension (PH) or 
cardiogenic shock, underestimation of valvular dysfunc-
tion such as mitral regurgitation or tricuspid regurgita-
tion, and accurate assessment of volume overload or 
RV failure. The RA/pulmonary capillary wedge pressure 
ratio, reflecting a disproportionate increase in RV to LV 
pressures, is inversely associated with eGFR in patients 
with AHF. 97 Notably, cardiorenal hemodynamic mea-
surements as assessed by invasive catheterization are 
confounded by the presence of elevated IAP or ascites, 
which represents a clinical caveat when PA catheteriza-
tion is used in the context of CRS. 24

The relative successes and failures of adjuvant meth-
ods in assessing volume status and guiding diuresis or 
ultrafiltration goals depend on the degree of plasma re-
fill in response to decongestive therapies. Sodium in the 
subcuticular and interstitial tissues, venous pressure, 
oncotic pressure, and several other poorly understood 
factors affect plasma refill rates with diuresis and ultra-
filtration. 98,99  23Na-labeled magnetic resonance imaging 
has demonstrated Na + in muscle and skin in patients 
with HF, and diuretic and ultrafiltration treatments can 
mobilize this Na + deposition in varying rates. 99,100 Thus, 
attempts at optimizing congestion in CRS with adjunct 
volume measurement techniques must factor in the 
limitations with predicting plasma refill rate with these 
devices, as well as the practical constraints of imple-
menting clinically driven protocols based on theoretical 
extrapolations of volume assessment.

TREATMENT STRATEGIES IN CRS
Decongestive Therapies
Diuretics
Fluid retention and congestion are hallmarks of AHF, 
and diuretics are a cornerstone of the management 
in patients with or without CRS. Diuretics are com-
monly prescribed (≈90% of patients with AHF), 101 but 
unlike many other pharmacological therapies for HF 
that are supported by data from large clinical trials,  
evidence-based best clinical practices for diuretic use in 
HF remain uncertain, affording immediate relief of HF 
symptoms but no benefit in short- or long-term mor-

tality or rehospitalization. 102,103 The AHA and others 
recently endorsed diuretic use in HF with a Class I rec-
ommendation based on expert opinion alone. 58 Diuretic 
therapy is also standard of care for subjects enrolled 
in interventional clinical trials for HF. Loop diuretics  
(furosemide, bumetanide, torsemide, ethacrynic acid), 
named for their site of action in the loop of Henle of 
the nephron, represent the primary class of diuretics in 
HF. This section focuses on the effects of loop diuretics 
on renal hemodynamics and the physiology of diuretic 
resistance with relevance to CRS.

Kidney Injury (Type 1 CRS) and RAAS Activation in 
Association With Loop Diuretics
Loop diuretics inhibit the Na +K +2Cl − cotransporter in 
the thick ascending limb of the loop of Henle, and 
Na +K +2Cl − inhibition leads primarily to natriuresis and 
volume loss in edematous states such as HF. Loop di-
uretics have a short duration of action, lasting 2 to 3 
hours and up to 6 hours for an intravenous bolus and 
oral administration, respectively. Oral furosemide has 
≈50% bioavailability with a wide range of values, 104 
explaining the variation in response to oral doses. In-
travenous administration and novel subcutaneous infu-
sions of furosemide ensure 100% bioavailability. 105,106 
Torsemide has a longer half-life and thus requires less 
frequent dosing. 107 Given the more predictable oral 
bioavailability and longer half-life in patients with HF, 
torsemide may be more effective as a decongestive 
therapy compared with furosemide, as suggested by 
several small studies and a recent meta-analysis. 108–110

Loop diuretics have multiple effects on neurohor-
monal activation and renal and systemic hemodynam-
ics that can predispose to kidney injury. Worsening 
kidney function in AHF (type 1 CRS) is associated with 
higher rehospitalization rates and mortality, 111,112 and 
several studies have assessed the clinical benefit of dif-
ferent dosing protocols for loop diuretics in AHF and 
their effect on kidney function. The DOSE-AHF trial 
(Diuretic Optimization Strategies Evaluation in Acute 
Heart Failure) randomized 308 patients with AHF to 
bolus versus continuous infusions of furosemide and 
a low-dose (intravenous equivalent of patient’s home 
diuretic dose) versus high-dose regimen (2.5 times the 
patient’s home loop diuretic dose intravenously) in a 
2-by-2 factorial design model. 113 In continuous ver-
sus intermittent diuretic dosing, no significant differ-
ences were observed in patients’ symptoms (P=0.47) 
or change in renal function (P=0.45); that is, no sig-
nificant differences in the incidence of type 1 CRS 
were seen. However there was a trend in favor of the 
high-dose strategy compared with the standard dose 
in symptom improvement (P=0.06), without a signifi-
cant difference change in renal function (P=0.21). The 
DIUR-AHF trial (Loop Diuretic Therapy in Acutely De-
compensated Heart Failure) randomized 92 patients 
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with AHF to a bolus or continuous infusion strategy. 
Like the DOSE-AHF trial, there was no difference in 
mortality; however, the continuous infusion was as-
sociated with greater rates of hyponatremia and the 
need for vasopressor infusion, and at 6 months, there 
were higher rates in the composite of rehospitalization 
or death. 114 A post hoc analysis of 198 patients who 
developed type 1 CRS, pooled from 3 randomized clin-
ical trials, DOSE-AHF, CARRESS-HF (Cardiorenal Rescue 
Study in Acute Decompensated Heart Failure), and 
ROSE-AHF (Renal Optimization Strategies Evaluation in 
Acute Heart Failure), compared a urine volume goal-di-
rected stepwise diuretic algorithm and standard diuret-
ic therapy. The stepwise algorithm aimed for a 24-hour 
urine volume between 3 and 4 L with furosemide with 
or without metolazone (a thiazide-type diuretic that 
inhibits sodium uptake in the downstream nephron 
segment) and showed more weight loss (−1.5±2.4 kg 
versus −0.4±1.5 kg; P<0.001) and higher net fluid loss 
(1.705±1.417 L versus 0.892±1.395 L; P<0.001) with 
an improvement in renal function (Δ serum creatinine, 
−0.1±0.3 mg/dL versus 0.0±0.03 mg/dL; P=0.03) 115 
compared with standard diuretic therapy. ROSE-AHF 
specifically compared the effect of low-dose dopamine, 
nesiritide, or placebo on decongestion and renal func-
tion. 116 In an ancillary study of ROSE-AHF, investigators 
measured biomarkers of kidney injury in individuals 
taking high-dose furosemide. In this analysis, kidney 
tubular injury detected by biomarkers did not appear 
to have an association with worsening renal function 
in the context of aggressive diuresis of individuals with 
AHF. Of note, the mean baseline eGFR was 44 mL/min 
per 1.73 m2, providing relevance for individuals with 
type 1 and 2 CRS. 9 Increases in NGAL, NAG (N-acetyl-
β-d-glucosaminidase), and KIM-1 (kidney injury mol-
ecule-1) were paradoxically associated with improved 
survival (HR, 0.80 per 10-percentile increase [95% CI, 
0.69–0.91]). These studies in AHF would suggest that 
loop diuretics per se may not contribute to biomarker-
associated renal injury, and a decrease in the eGFR may 
be a surrogate for severity of cardiac disease. On the 
basis of the analyses highlighted above, high-dose in-
termittent furosemide appears to be safe and effective 
in AHF. Whether diuretics promote renal injury in indi-
viduals with more severe baseline kidney function, for 
example, stage 4 or 5 CKD, is uncertain. Furthermore, 
without guidance from assessment of blood volume, 
rate of plasma refill, or measures of acute tubular in-
jury, it is apparent that the use of diuretics in HF is 
empirical without a proven strategy associated with 
favorable outcomes from either observational studies 
or randomized trials. This raises the hope for future 
trials guided by these parameters to improve outcomes 
compared with usual care.

The potentially deleterious effects of RAAS activa-
tion by loop diuretics could theoretically limit the abil-

ity to break the neurohormonal vicious cycle with AHF. 
However, in a follow-up analysis of DOSE-AHF and 
CARRESS-HF, high-dose loop diuretic therapy did not 
result in RAAS activation greater than that with low-
dose diuretic therapy. In fact, ultrafiltration resulted in a 
greater increase in plasma renin activity than stepwise 
pharmacological care. Neither plasma renin activity nor 
aldosterone was significantly associated with short-
term outcomes in AHF and CRS. 117 This emphasizes the 
key concept that blood volume represents a small com-
ponent of extracellular volume from which fluid losses 
are mobilized in the short term by diuretics or ultra-
filtration. Reductions in extracellular fluid volume are 
further limited by the degree of plasma refill from the 
extracellular fluid into the intravascular space, the im-
pairment of which further triggers endogenous produc-
tion of hormones such as angiotensin II and vasopres-
sin. Thus, a careful clinical assessment of the degree of 
plasma refill is critical in minimizing triggering of the 
adaptive neurohormonal responses to impaired plasma 
refill when decongestive therapies are administered.

Diuretic Resistance
Diuretic resistance is defined as the attenuation of the 
maximal diuretic effect that ultimately limits sodium and 
chloride excretion and is a well-characterized phenom-
enon of diuretic use. In contrast to the lack of kidney 
injury associated with diuretic use, 9 diuretic resistance 
is associated with renal impairment, increased risk of 
rehospitalization after HF, and mortality. 118,119

Several factors contribute to diuretic resistance, in-
cluding drug pharmacokinetics and pharmacodynam-
ics, the braking phenomenon, and tubular remodeling 
(Figure 3). Free, unbound loop diuretics must reach the 
urinary lumen of the thick ascending limb and bind to 
the site of chloride entry to inhibit Na +K +2Cl −. There-
fore, for outpatient therapy, oral bioavailability is the 
first line of resistance. All loop diuretics are not created 
equal. Bumetanide and torsemide have higher bioavail-
ability than furosemide. 120 HF and food intake can pro-
long time to peak concentration and the peak drug lev-
els. 121 Because loop diuretics are 95% protein bound, 
hypoalbuminemia increases the volume of distribution 
and reduces the availability of loop diuretics for facili-
tated diffusion. Nonsteroidal anti-inflammatory drugs 
and uremic toxins can also competitively inhibit drug 
transport across proximal tubular epithelial cells.

Specific factors related to CRS promote diuretic re-
sistance. The bioavailability of loop diuretics is similar, 
but CKD reduces excretion of diuretic into the tubu-
lar lumen. CKD does not limit the peak effect of drug 
delivered to the lumen. Overall diuretic-induced sodi-
um excretion is reduced in CKD by the reduced and 
diminished filtered load of sodium. Thus, administra-
tion of effective doses multiple times per day can cir-
cumvent the above constraints. 122,123 HF also reduces 
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the peak effect of the drug, which may be caused by 
increased proximal reabsorption of sodium (eg, result-
ing from RAAS activation) or increased expression of 
Na +K +2Cl −. 124 These changes necessitate more frequent 
dosing rather than dose escalation to achieve maximal 
sodium excretion.

Diuretic use (eg, in chronic HF and in type 1 or 2 CRS) 
can induce the braking phenomenon in the short term 
and distal tubular hypertrophy in the long term. The 
braking phenomenon refers to diminished diuretic ef-
ficacy with each successive dose. The effect is observed 
within hours, but the mechanism is unclear. Sodium loss 
is thought to play a role in the upregulation of proximal 
and distal sodium transporters, and sodium repletion 
can attenuate this compensation 125 and, in turn, the 
braking phenomenon. A recent study including indexes 
of proximal versus sodium reabsorption in subjects with 
HF treated with furosemide indicates that enhanced 
distal sodium transport, more than proximal transport, 
attenuates the maximal efficacy of furosemide. 126 This 
nephron-specific element of diuretic resistance is also 
more consequential than delivery of the loop diuretic to 
the site of action 127 and forms the rationale for use of 
thiazide-type diuretics to augment furosemide-induced 
sodium excretion. Whether the concept of diuretic syn-
ergy can be transferred to HF and to CRS is uncertain. A 
large-scale randomized clinical trial of thiazide-type di-
uretics as an adjunct to furosemide in HF or CRS is lack-
ing. However, the ATHENA-HF trial (Efficacy and Safety 
of Spironolactone in Acute Heart Failure) tested spi-
ronolactone, a potassium-sparing diuretic that targets 
another hypertrophied downstream nephron segment, 
versus placebo and did not demonstrate significant clin-
ical benefit. 128 Recent data suggest that hypochloremia 

plays a critical role in neurohormonal activation in pa-
tients with HF on high-dose loop diuretics, which may 
contribute to diuretic resistance in these subjects. 129

Diuretic Efficiency
The concept of diuretic efficiency focuses on quantify-
ing the renal response to a fixed dose of a loop diuretic 
using net fluid output in milliliters or weight change in 
kilogram per 40 mg furosemide equivalent 130 or natri-
uretic response to continuous intravenous furosemide 
defined as urine sodium to urine furosemide ratio. 131 
Diuretic efficiency may serve as a prognostic marker in 
CRS. Patients with diuretic efficiency below the median 
in the ESCAPE trial experienced nearly 3 times the risk 
of death compared with those patients with diuretic 
efficiency above the median, despite adjustment for 
baseline and in-hospital characteristics (HR, 2.86 [95% 
CI, 1.53–5.36]). 130 As another measure of diuretic ef-
ficiency, Singh et al 131 measured the ratios of urine so-
dium to urine furosemide in 52 patients hospitalized 
with AHF on continuous furosemide infusions. Patients 
with a ratio of urine sodium to urine furosemide <2 
mmol/mg (indicative of low diuretic efficiency) experi-
enced less weight loss and fluid removal in the first 24 
hours and were at significantly increased risk for death, 
HF rehospitalization, and cardiac transplantation in an 
adjusted multivariate analysis (HR, 2.2 [95% CI, 1.08–
4.49]). In addition, these patients were more likely to 
experience worsening renal function in the context of 
decongestive therapies. Thus, measurements of diuretic 
efficiency may help to identify individuals who develop 
diuretic resistance and to identify a higher-risk subset of 
patients with CRS with worse outcomes. Further stud-

Figure 3. Mechanisms of diuretic resistance in cardiorenal syndrome.  
Several extrarenal and renal factors impede the delivery of diuretic to the site of action in the nephron. After initial efficacy, diuretics become less effective because 
of the braking phenomenon and distal tubular remodeling. Potential strategies to overcome diuretic resistance include increased dose, frequency, and combination 
diuretic therapy. CCD indicates cortical collecting duct; CNT, connecting tubule; cTAL, cortical thick ascending limb; DCT, distal convoluted tubule; mTAL, medullary 
thick ascending limb; OMCD, outer medullary collecting duct; and PT, proximal tubule.
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ies on the utility of diuretic efficiency in guiding tar-
geted treatment strategies in CRS are necessary.

Ultrafiltration
Ultrafiltration, achieved by passing blood through hol-
low fibers made of semipermeable material while ap-
plying a negative pressure to the space surrounding the 
fibers, causes isotonic fluid to be removed from the in-
travascular space. The composition of ultrafiltrate con-
trasts with the much lower sodium content in the urine 
produced by loop diuretics 132 and allows decongestion 
without the use of loop diuretics, with potential ben-
efits including less potassium wasting, less renin and 
aldosterone release, and increased sodium loss. Thus, 
the optimal mode of decongestion in AHF using diure-
sis versus ultrafiltration has been the subject of clinical 
trials, and key aspects of the randomized trials in this 
field are summarized in Table 3.

The UNLOAD trial (Ultrafiltration Versus Intravenous 
Diuretics for Patients Hospitalized for Acute Decompen-
sated Heart Failure) randomized 200 patients within 24 
hours of hospitalization for AHF to either loop diuret-
ics or ultrafiltration. 134 The primary end of weight loss 
at 48 hours was significantly higher in the ultrafiltra-
tion group (5.0±0.68 kg versus 3.1±0.75 kg; P=0.001), 
whereas dyspnea scores between the groups were not 
significantly different. There was a significant reduc-
tion in 90-day rehospitalization rates in the ultrafiltra-
tion arm, a secondary end point. Although UNLOAD 
demonstrated no differences in episodes of hypoten-
sion within the first 48 hours or serum creatinine at 90 
days between the 2 groups, it was unclear whether the 
secondary outcome of reduced readmissions at 90 days 
could have been achieved in the diuretic arm with more 
aggressive dose escalation.

CARRESS-HF was a landmark study that enrolled 
188 patients admitted with AHF and worsening renal 
function. 135 Of all randomized trials for ultrafiltration 
in AHF, CARRESS-HF represents the only study that in-
cluded patients with type 1 CRS. The primary end point 
was a bivariate change in weight and creatinine at 96 
hours after randomization. No significant differences in 
weight loss were noted between the 2 groups (5.5±5.1 
kg in the diuretic group versus 5.7±3.9 kg in the ultra-
filtration group; P=0.58). The ultrafiltration group had 
an increase in serum creatinine of 0.23 mg/dL versus 
a decrease of 0.04±0.53 mg/dL in the diuretic group 
(P=0.003). In addition, the patients in the ultrafiltra-
tion group experienced a higher rate of adverse events 
(72% versus 53%; P=0.03).

The contrasting results between CARRESS-HF and 
UNLOAD highlight the nuances in study design, patient 
selection, and therapeutic algorithms unique to each 
study. Patients in CARRESS-HF had to demonstrate 
worsening renal function (CRS) to qualify for inclusion, 
signifying a sicker group of patients. In addition, ultra-

filtration protocols were at fixed rates in CARRESS-HF, 
which physiologically contrast the documented de-
crease in plasma refill rates with continuous ultrafiltra-
tion. 138 The glomerular filtration and tubular secretion 
of creatinine with diuresis differ from removal of creati-
nine with ultrafiltration with a sieving coefficient of 1 
and may not represent the actual effects of either ther-
apy on renal function. Despite these issues, CARRESS-
HF provided a strong argument against the use of ultra-
filtration as primary treatment in patients with type 1 
CRS. The AVOID-HF trial (Aquapheresis Versus Intrave-
nous Diuretics Hospitalizations for Heart Failure), which 
sought to address these criticisms with a stepped-up 
diuretic algorithm and a detailed ultrafiltration proto-
col, was terminated before completion because of slow 
enrollment. 137 In the 224 patients who completed the 
protocol, nonsignificant trends toward reduced HF re-
admissions at 90 days were achieved, but an increase 
in adverse events was also reported in the ultrafiltration 
group (14.6% versus 5.4%; P=0.026). Future studies 
that address the utility of ultrafiltration in patients with 
functional diuretic resistance and frequent readmis-
sion for AHF are necessary to see whether clinically and 
economically meaningful outcomes can be achieved in 
these high-risk populations.

Neurohormonal Modulation and 
Vasodilator and Inotropic Therapy
The maladaptive neurohumoral responses in AHF  
resulting from type 1 CRS involve key vasoactive pep-
tides such as vasopressin, endothelin, and adenosine 
and a diminished response to endogenous natriuretic 
peptides. In addition, the hemodynamic compromise 
that often accompanies HF may contribute to type 1 
CRS. This section reviews pharmacological agents that 
affect neurohormones or improve hemodynamics that 
have been studied in the treatment of CRS.

Arginine vasopressin is a nonapeptide hormone  
released by posterior pituitary and in conditions of  
elevated serum osmolarity, reduced cardiac index, or 
hypovolemia. 139 Tolvaptan, a selective V2 receptor an-
tagonist, causes aquaresis without loss of sodium. The 
EVEREST program (Efficacy of Vasopressin Antagonist 
in Heart Failure Outcome Study With Tolvaptan) evalu-
ated the use of tolvaptan in AHF and LVEF <40% and 
showed similar rates of adverse events in the tolvap-
tan and placebo groups with greater degrees of weight  
reduction in the tolvaptan arm in 2 short-term trials. 140 
No benefits in reduction in death or the composite of 
cardiovascular death and HHF were noted in the long-
term trial. 141 In TACTICS-HF (Targeting Acute Conges-
tion With Tolvaptan in Congestive Heart Failure), the 
addition of tolvaptan to a standardized furosemide 
regimen did not improve the number of responders at  
24 hours despite greater weight loss. 142 Similarly, the 
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SECRET of CHF trial (Short Term Clinical Effects of 
Tolvaptan in Patients Hospitalized for Worsening Heart 
Failure With Challenging Volume Management) trial 
did not show significant improvement in dyspnea in  
patients with AHF who were selected for greater poten-
tial benefit from tolvaptan. 143

Although patients with AHF have elevated natriuret-
ic peptides, the vasodilatory and natriuretic effects of 
the endogenous release of these substances are often 
not enough to overcome the hemodynamic effects of 
the other neurohormones mentioned. Nesiritide is a 
recombinant BNP with venous, arterial, and coronary 
vasodilatory properties that reduce afterload and in-
crease CO without inotropic effects. It also causes na-
triuresis, improves the GFR, and suppresses the RAAS 
axis. 144,145 The ASCEND-HF trial (Acute Study of Clinical 
Effectiveness of Nesiritide and Decompensated Heart 
Failure) randomized 7141 patients with AHF to 1 to 7 
days of intravenous nesiritide or placebo. The primary 
end point of dyspnea improvement, rehospitalization, 
or death was not statistically different between groups. 
The coprimary end point of dyspnea improvement at 
6 and 24 hours was statistically higher in the nesirit-
ide group, but this group also had more hypotension, 
and there were no differences in renal function. 146 The 
ROSE-AHF trial randomized 360 patients with AHF in-
dependent of LVEF and eGFR of 15 to 60 mL/min per 
1.73 m2 at 1:1 to low-dose nesiritide or dopamine and, 

within each randomization, randomized them further 
at 2:1 into either active treatment or placebo infusions 
for 72 hours. Low-dose nesiritide had no significant  
effect on the coprimary end points of cumulative urine 
volume and change in serum CysC at 72 hours and no 
effect on the secondary end points reflective of decon-
gestion, renal function, or clinical outcomes. 116

Although theoretically attractive, neurohormonal 
modulation in the AHF setting has failed to improve hard 
clinical and renal end points in large randomized studies. 
Because of this, only tolvaptan and nesiritide have been 
approved for use by the US Food and Drug Administra-
tion, and their use is limited to specific clinical situations.

Inotropes have the potential to improve type 1 CRS 
by improving CO and reducing venous congestion.  
Specific inotropes such as dopamine have direct renal  
effects that may additionally result in improvement of type 
1 CRS, but clinical data are mixed. A common theme in 
studies of inotropic therapy for AHF and reduced EF is 
that although favorable acute hemodynamic effects are 
achieved, long-term cardiovascular outcomes are not 
affected because of the presence of arrhythmias, isch-
emia, and worsening long-term myocardial function. 147

Dopamine is a catecholamine with effects on the β- 
and α-adrenergic receptors, as well as the renal dopa-
minergic receptors, resulting in cardiac inotropy, systemic 
vasoconstriction, and improved renal blood flow. 148 Early 
studies supported the renal protective effects of low-dose 

Table 3. Evidence Table of RCTs Comparing Pharmacological Therapy for Fluid Overload and Ultrafiltration in Patients With Acute Decompensated HF

Study Subjects, n Primary End Point UF Protocol Diuretics Protocol
Effect on Renal 

Function
Effect on Weight 

Loss
Adverse 
Events

RAPID-CHF 133 40 Weight loss at 24 h Single 8-h 
UF session to 

maximum rate of 
500 mL/min per 

1.73 m2

Clinician based NS Similar in both 
groups; trend 
toward higher 

weight loss in UF 
arm

…

UNLOAD 134 200 Weight loss and 
dyspnea at 48 h

Time and rate 
of UF flexible; 

maximum rate of 
500 mL/min per 

1.73 m2

Clinician based NS UF>DT …

CARRESS-HF 135 188 Change in SCr and 
weight at 96 h

Fixed UF rate of 
200 mL/min per 

1.73 m2

Prespecified 
stepped-up 
algorithm

Significant increase 
in SCr with UF

Similar in both 
groups

Higher SAEs in 
UF arm

CUORE 136 56 Hospitalization for 
HF at 1 y

Time and rate 
of UF flexible; 

maximum rate of 
500 mL/min per 

1.73 m2

Clinician based Significant increase 
in SCr with DT at 

6 mo

Similar in both 
groups

…

AVOID-HF* 137 224 Time to HF <90 d 
after discharge

Time and rate 
of UF flexible; 

maximum rate of 
500 mL/min per 

1.73 m2

Prespecified 
algorithm

NS Similar in both 
groups

Higher SAEs in 
UF arm

AVOID-HF indicates Aquapheresis Versus Intravenous Diuretics Hospitalizations for Heart Failure; CARRESS-HF, Cardiorenal Rescue Study in Acute 
Decompensated Heart Failure; CUORE, Continuous Ultrafiltration for Congestive Heart Failure; DT, diuretic therapy; ellipses (...), data not available or reported.; HF, 
heart failure; NS, not significant; RAPID-CHF, Relief for Acutely Fluid Overloaded Patients With Decompensated Congestive Heart Failure; RCT, randomized 
controlled trial; SAE, serious adverse event; SCr, serum creatinine; UF, ultrafiltration; and UNLOAD, Ultrafiltration Versus Intravenous Diuretics for Patients 
Hospitalized for Acute Decompensated Heart Failure.

*Trial terminated early. Data as reported on subjects enrolled until trial termination.
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dopamine; however, subsequent studies demonstrated a 
lack of long-term clinical improvement in the treatment 
of AHF. Meta-analysis data have demonstrated improved 
urine output but no significant difference in change in cre-
atinine, rehospitalization, or mortality with low-dose do-
butamine used in various clinical scenarios. 149 As discussed, 
the ROSE-AHF trial showed no difference in the coprima-
ry end points of cumulative urine volume and change in  
serum CysC at 72 hours or any effect on the secondary 
end points reflective of decongestion, renal function, or 
clinical outcomes when a 72-hour infusion of low-dose 
dopamine was compared with placebo in patients with 
AHF. 116 Post hoc analysis demonstrated a differential ef-
fect on 72-hour cumulative urine volume in favor of do-
pamine in patients with LVEF ≤40% (P=0.029) compared 
with nesiritide in patients with LVEF >40% (P=0.001) but 
no differential effect in change in CysC (P=0.66), sug-
gesting a worse clinical effect of low-dose dopamine in 
patients with HFpEF. 150 Other novel inotropes such as 
levosimendan (calcium-sensitizing agent and potassium 
channel modulator) and omecamptiv mecarbil (cardiac 
myosin activators) have limited data in the context of CRS.

Although progress has been made in the field of 
inotrope and vasodilator therapy, its long-term efficacy 
in the treatment of AHF and type 1 CRS is yet to be 
demonstrated.

RAAS Inhibition in Chronic CRS
Angiotensin-Converting Enzyme Inhibitors/ARBs
Although the importance of RAAS inhibition in slowing 
CKD progression is well established, there is a paucity of 
data on clinically relevant long-term renal end points in 
trials on RAAS inhibition in HF. Given the known hemo-
dynamic (and potentially reversible) effects of angiotensin 
blockade, interpreting fluctuations in serum creatinine as 
meaningful renal end points in the context of the use of 
angiotensin-converting enzyme (ACE) inhibitors and ARBs 
poses challenges in clinical practice. The benefits of ACE 
inhibitors in patients with HF and renal impairment have 
been demonstrated in observational data 151,152 and post 
hoc analyses of randomized controlled trials (RCTs). These 
studies pertain specifically to the presence of preexisting 
renal impairment (type 2 or 4 CRS) in outpatient studies 
with HF, not to acutely decompensated subjects with CRS.

CONSENSUS demonstrated a marked reduction 
in HF-associated mortality and symptom burden and 
was characterized by a doubling of serum creatinine in 
11% of subjects taking enalapril compared with those 
taking placebo 153 However, trends in serum creatinine 
rise were predominantly early and returned to within 
30% of baseline values in most subjects, consistent 
with the known hemodynamic effects of ACE inhibi-
tors, with the effect of concomitant diuretic use and 
hypotension being independent predictors of doubling 
of serum creatinine. 21 SOLVD (Study of Left Ventricular 

Dysfunction) reiterated the benefits of enalapril for HF 
symptoms and hospitalization reduction (LVEF <35%, 
serum creatinine <2.5 mg/dL) in a much larger popula-
tion compared with CONSENSUS (2569 versus 253 sub-
jects). 154 The enalapril group in SOLVD showed a 33% 
higher likelihood of a serum creatinine rise of >0.5 mg/
dL, but no data on progression of CKD, ESKD, or dou-
bling of creatinine were reported. A post hoc analysis 
of SOLVD with HF and CKD demonstrated the mortality 
benefits even in subjects with higher degrees of CKD. 155 
The overall incidence of hyperkalemia was 6% overall 
with enalapril, correlating with the severity of renal 
dysfunction. 156 However, in a meta-analysis of 5 place-
bo-controlled RCTs of ACE inhibitors in HF by Flather  
et al, 157 drug discontinuation was rarely necessary de-
spite higher rates of AKI in the treatment arms versus 
placebo in most cases. A meta-analysis of 8 trials look-
ing at the use of RAAS inhibition in KT demonstrated 
a higher risk of hyperkalemia (relative risk [RR], 2.44 
[95% CI, 1.53–3.9]). 158 The strength of evidence of ACE 
inhibitors in HF with predialytic CKD is not established 
given the lack of inclusion of these patients in RCTs for 
HF. Hospitalization and safety reporting data from the 
ongoing multicenter randomized controlled STOP-ACEi 
trial (Trial of Angiotensin-Converting Enzyme Inhibitor/
Angiotensin Receptor Blocker Withdrawal in Advanced 
Renal Disease; ISRCTN62869767) will shed light on the 
consequences of ACE inhibitors in advanced CKD and 
related cardiorenal outcomes. Although data on ARBs 
in CKD and HF specifically are sparse, in a propensity 
score analysis of 1665 patients with HF (EF <45%) and 
eGFR <60 mL/min per 1.73 m2, treatment with an ACE 
inhibitor or ARB was associated with significant reduc-
tions in all-cause mortality (HR, 0.68 [95% CI, 0.74–
0.996]; P=0.04) 159 (Tables  4 and 5). The addition of 
ARBs to ACE inhibitors has been discouraged because 
of the increased risk of adverse events. 176

Neprilysin/Renin-Angiotensin Inhibitors
Trials that looked at outcomes with the combination 
of renin angiotensin system blocker/neprilysin inhibi-
tion (sacubitril/valsartan and omapatrilat) provided an 
excellent opportunity to study the combined approach 
to RAAS blockade and vasodilator versus RAAS block-
ade alone. A recent meta-analysis analyzed data from 
3 trials in HFrEF that compared combined neprilysin/
RAAS inhibition with RAAS inhibition alone and in-
cluded the following: IMPRESS (Inhibition of Metallo 
Protease by Omapatrilat in a Randomized Exercise and 
Symptoms Study of Heart Failure; n=573), OVERTURE 
(Omapatrilat Versus Enalapril Randomized Trial of Utility 
in Reducing Events trial; n=5770), and PARADIGM-HF 
(Prospective Comparison of ARNI With ACEI to Deter-
mine Impact on Global Mortality and Morbidity in Heart 
Failure; n=8399). 177 The composite outcome of death 
or HHF was reduced numerically in patients receiving 
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Table 4.  Evidence Table of Outcomes in HF in Subjects With CKD Treated With ACE Inhibitors

Study n Study Design Population CKD
Concomitant 

Therapy

Baseline 
Renal 

Function Outcome in CKD Group

CONSENSUS 160–162 235 RCT, enalapril vs 
placebo

Patients with 
NYHA class 
IV HF 

Excluded: 
GFR <30 mL/min 
per 1.73 m2

CKD: 55% have 
Cr >1.58 mg/dL

MRA 42%

Digoxin 93%

β-Blocker 3%

Cr 1.45 mg/
dL

GFR ≈47 mL/
min per 1.73 
m2

Mortality: NS

SOLVD 
Treatment 154,163

2569 RCT, enalapril vs 
placebo

HFrEF, EF 
≤35%, 
symptomatic 
HF

Excluded:  
Cr >2.5mg/dL

CKD: 
CKD ≥3A (41%)

CKD ≥3B (10%)

MRA 9%

Digoxin 67%

β-Blocker 8%

Cr 1.2 mg/dL Mortality: 
CKD ≥2: NS 
HR, 0.88 (95% CI, 
0.73–1.06)

CKD ≥3B: NS 
HR, 0.76 (95% CI, 
0.54–1.08)

HHF: 
CKD ≥3A: HR, 0.59 (95% 
CI, 0.48–0.73)

CKD ≥3B: HR, 0.69 (95% 
CI, 0.46–1.02)

SOLVD
Prevention 164

4228 RCT, enalapril vs 
placebo

LV 
dysfunction

EF ≤35%, 
NYHA class I/II

Excluded: 
Cr >2.0 mg/dL

MRA 4%

Digoxin 12%

β-Blocker 35%

Cr 1.2 mg/dL No CKD analysis

SAVE 165,166 2183 RCT, captopril vs 
placebo

MI with LV 
dysfunction

EF 31%

Excluded: Cr ≥2.5 
mg/dL

CKD: 
GFR ≥75 mL/min 
per 1.73 m2: 37%

GFR 75–60 mL/
min per 1.73 m2: 
30%

CKD3A: 24%

CKD ≥3B: 9%

β-Blocker 35% Cr 1.3 mg/dL Mortality: HR, 0.79 (95% 
CI, 0.65–0.95)

HF: HR, 0.69 (95% CI, 
0.57–0.84)

No subgroup HR in CKD

NNT for MI, cardiovascular 
death, or HF: 
CKD vs non-CKD=9 vs 19

ATLAS 167 3164; 
405 not 

previously on 
ACE inhibitor

RCT, lisinopril 
high dose vs low 
dose

Symptomatic 
HF, EF ≤30%

Excluded: Cr 2.5 
mg/dL

CKD: Cr >1.5

31%

β-Blocker 11%

Digoxin 67%

Cr 1.3 mg/dL Adverse event in CKD: 
high dose vs low dose

Hypotension: 31% vs 
21.4%

Renal dysfunction/
hyperkalemia: 15.7% vs 
10%

DIG Database 168 1707 patients 
with CKD 
from DIG 

data set, 208 
after match

Propensity score 
analysis of DIG 
trial data, ACE 
inhibitor vs no 
ACE inhibitor

Chronic HF 
with sinus 
rhythm, mean 
EF 28%

Excluded: Cr ≥2.5 
mg/dL

CKD: 
Cr ≥1.5mg/dL for 
men and ≥1.3 
mg/dL for women

Digoxin 47%

MRA 12%

Cr 1.8 mg/dL

GFR 40 mL/
min per 1.73 
m2

All-cause mortality

Not matched, adjusted: 
HR, 0.66 (95% CI, 
0.49–0.90)

Matched, adjusted: 0.58 
(95% CI, 0.35–0.96)

Berger et al 169 4573 Retrospective, 
ACE inhibitor or 
ARB vs no ACE 
inhibitor or ARB

Patients 
with CHF 
(Framingham 
criteria) with 
CKD

CKD:

CKD1: 22%

CKD2: 25%

CKD3: 37%

CKD4: 11%

CKD5: 7%

β-Blocker 50%

MRA 20%

NA All-cause mortality: ACE 
inhibitor/ARB vs no ACE 
inhibitor

Nondialysis CKD: 11% vs 
41%, P=0.05

CKD2: 6.3% vs 8.6%

CKD3: 5.4% vs 14%

CKD4: 9.4% vs 18.5%

Ahmed et al 170 1340 Retrospective, 
propensity-
matched analysis, 
ACE inhibitor/
ARB vs no ACE 
inhibitor/ARB

HFpEF with 
CKD

CKD: 
CKD ≥3 100%

β-Blocker 20%

MRA 10%

Cr 1.7 mg/dL

GFR 40 mL/
min per 1.73 
m2

All-cause mortality: Not 
matched, adjusted: HR, 
0.83 (95% CI, 0.72–0.96)

Matched: HR, 0.82 (95% 
CI, 0.70–0.97)

(Continued )
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combined neprilysin/RAAS inhibition in all 3 trials, with 
a pooled HR of 0.86 (95% CI, 0.76–0.97; P=0.013). 
Combined neprilysin/RAAS inhibition compared with 
ACE inhibitor was associated with more hypotension 
but less renal dysfunction and hyperkalemia in all 3 tri-
als. In the PARAMOUNT trial (Prospective Comparison 
of ARNI Versus ARB on Management of Heart Failure 
With Preserved Ejection Fraction), LCZ696 reduced 
NT-proBNP, blood pressure, and atrial size to a greater 
extent while preserving eGFR to a greater extent (36-
week decline of GFR, 1.6 mL/min per 1.73 m2 in the 
LCZ696 group versus 5.2 mL/min per 1.73 m2 in the val-
sartan group; P=0.007). 178 In a subset analysis of PARA-
DIGM-HF, treatment with sacubitril/valsartan resulted a 
slower rate of decrease in eGFR compared with enala-
pril, including in patients with CKD, despite a modest 
increased in albuminuria. 179 The HARP-III trial (UK Heart 
and Renal Protection III), which is a multicenter double-
blind RCT comparing 97/103 mg of sacubitril/valsartan 
(2 times daily) with 300 mg of irbesartan (1 time daily) 
among 414 patients with CKD, will be the first test of 
an angiotensin receptor neprilysin inhibitor in patients 
with CKD with or without proteinuria. 180

Mineralocorticoid Receptor Antagonists
The long-term efficacy of achieving complete suppression 
of RAAS with an ACE inhibitor/ARB is limited by the phe-
nomenon of aldosterone escape, resulting in an increased 
level of serum aldosterone. Mineralocorticoid receptor an-
tagonists (MRAs), when added to an ACE inhibitor/ARB, 
can provide more suppression of RAAS with potential 
long-term cardiorenal benefits. The reduction in mortality 

and cardiovascular events with HFrEF was demonstrated 
in RALES (Randomized Aldactone Evaluation Study) 181 and 
EPHESUS (Eplerenone in Post-Acute Myocardial Infarction 
Heart Failure Efficacy and Survival). 182 In the EMPHASIS-HF 
trial (Eplerenone in Mild Patients Hospitalization and Sur-
vival Study in Heart Failure), in which 33% of patients had 
an eGFR <60 mL/min per 1.73 m2, the effect of eplerenone 
on the primary composite end point on HHF or cardiovas-
cular death was consistent in patients dichotomized at an 
eGFR <60 mL/min per 1.73 m2. 183 Data on the safety and 
efficacy of MRAs in HF with advanced CKD (stage 4 and 
5) are limited. However, in appropriately selected patients 
with symptomatic HFpEF, elevated BNP level, HF admis-
sion within 1 year, eGFR >30 mL/min per 1.73 m2, creati-
nine <2.5 mg/dL, and potassium <5.0 mEq/L, particularly 
in those with elevated BNP levels, use of spironolactone 
might be considered with close monitoring of potassium 
and renal function 58 (Table 6).

Given the universal exclusion of moderate to severe 
CKD in HF outcomes trials and the lack of reporting on 
long-term renal outcomes, the true burden of hyper-
kalemia in the management of chronic CRS is unclear. 
Collins and coauthors 187 have recently demonstrated in 
a nationwide electronic medical record (n=1 716 141 
with ≥2 potassium values) that the presence of HF in-
creases the fatal risks of hyperkalemia in patients treated 
with RAAS inhibitors. In this analysis, the overall death 
rate was 35.7% with hyperkalemia in those subjects 
with HF, CKD, and DM compared with a death rate of 
2.7% in control subjects. In a meta-analysis of clinical 
trials (n=16 065 subjects), the rates of MRA-associated 
hyperkalemia (9.5%) were ≈2-fold that of control sub-

Edner et al 171 2410 Prospective, 
propensity-
matched analysis, 
ACE inhibitor 
(67%)/ARB (31%)/
both 2% vs no 
ACE inhibitor/ARB

HFrEF, EF 
≤39% with 
CKD4

CKD ≥4: 100% β-Blocker 87%

MRA 25%

Digoxin 11%

GFR 23 mL/
min per 1.73 
m2

All-cause mortality: 
Matched adjusted: HR, 
0.83 (95% CI, 0.73–0.94)

Overall adjusted: HR, 0.81 
(95% CI, 0.73–0.91)

Gurwitz et al 172 2414 HFrEF and HFpEF 
with chronic lung 
disease and CKD 

HFrEF 32%

HFpEF 68%

GFR <60 mL/min 
per 1.73 m2

NA NA HFrEF: All-cause  
mortality: HR, 0.6 (95% 
CI, 0.4–0.9)

HHF: HR, 0.43 (95% CI, 
0.28–0.67)

HFpEF: All-cause  
mortality: HR, 0.5 (95% 
CI, 0.3–0.8)

HHF: HR, 0.35 (95% CI, 
0.18–0.68)

ACE indicates angiotensin-converting enzyme; ARB, angiotensin receptor blocker; ATLAS, Assessment of Treatment With Lisinopril and Survival; CHF, congestive 
heart failure; CKD, chronic kidney disease; CONSENSUS, Cooperative North Scandinavian Enalapril Survival Study; Cr, creatinine; DIG, Digitalis Investigation Group; 
EF, ejection fraction; GFR, glomerular filtration rate; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reserved ejection 
fraction; HHF, hospitalization for heart failure; HR, hazard ratio; LV, left ventricular; MI, myocardial infarction; MRA, mineralocorticoid receptor antagonist; NA, not 
applicable; NNT, number needed to treat; NS, not significant; NYHA, New York Heart Association; RCT, randomized controlled trial; SAVE, Survival and Ventricular 
Enlargement; and SOLVD, Study of Left Ventricular Dysfunction.

Table 4.  Continued

Study n Study Design Population CKD
Concomitant 

Therapy

Baseline 
Renal 

Function Outcome in CKD Group
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jects, and among hyperkalemic subjects, 54% were 
truly caused by the MRA agent. 188 Incorporating the 
novel oral antihyperkalemic agents (patiromer acetate, 
sodium zirconium cyclosilicate) into the therapeutic  
armamentarium of chronic CRS may maximize the  
additive benefits of MRAs to ACE inhibitors/ARBs. 189

β-Adrenergic Blockers
β-Adrenergic blockers have been evaluated in numer-
ous RCTs and shown to improve NYHA class and LVEF, 
to alleviate symptoms, to reduce hospitalization bur-
den, and to prolong survival. β-Blockers that have been 
shown to reduce mortality in HF include metoprolol and 
bisoprolol (β-1 receptor blockers), and carvedilol (α-1, 
β-1, and β-2 receptor blockers) and are recommended 
as Class 1A evidence for HFrEF by the 2013 American 
College of Cardiology Foundation/AHA guidelines on 
the management of HF. 190 Given the paucity of data on 
β-blockers specific to patients with CKD, the risk/ben-
efit profiles of these drugs in CKD depend on post hoc 
analyses of major RCTs and observational data.

The MERIT-HF study (Metoprolol CR/XL Controlled 
Randomized Intervention Trial in Chronic HF) randomized 
3991 patients with NYHA class II to IV HF and EF <40% 
to metoprolol versus placebo. A secondary analysis that 
looked at the effects of metoprolol across eGFR ranges 
of >60, 45 to 60, and <45 mL/min per 1.73 m2 showed 
significant benefits across all subgroups. 191 The benefits 
were more pronounced in the group with eGFR <45 mL/

min per 1.73 m2, with a nearly 60% reduction in HHF and 
mortality. In the SENIORS study (Study of the Effects of 
Nebivolol Intervention on Outcomes and Rehospitaliza-
tion in Seniors With Heart Failure), the composite of all-
cause mortality and cardiovascular hospital admissions 
was significantly reduced in 2112 patients >70 years of 
age with HF who were randomized to nebivolol versus 
placebo. 192 Although the benefits of nebivolol were ob-
served across tertiles of eGFR, the benefit seen in the 
lowest eGFR group (<55 mL/min per 1.73 m2) was not 
as robust as with MERIT-HF. The CIBIS-II study (Cardiac 
Insufficiency Bisoprolol Study) randomized 2647 patients 
with NHYA class III to IV HF with EF <35% to bisoprolol 
versus placebo. 193 A serum creatinine of >3.4 mg/dL was 
a prespecified exclusion criterion. The beneficial effects 
of bisoprolol with significant reductions in all-cause mor-
tality were observed across baseline GFR quartiles. Final-
ly, a meta-analysis of 6 RCTs with β-blockers in patients 
with CKD and HF showed that β-blockers significantly 
reduced the risk of all-cause mortality (relative risk reduc-
tion [RRR], 28%) and cardiovascular mortality (RRR, 34%) 
compared with placebo. 194 Tolerability of β-blockers is 
limited by fluid retention, which may complicate the 
management of HF, bradycardia, hypotension, and  
fatigue. MERIT-HF showed similar rates of tolerance  
across eGFR ranges. However, in the post hoc analyses of 
CIBIS-II and SENIORS, rates of β-blocker discontinuation 
were higher in subgroups with eGFR <45 and <55 mL/
min per 1.73 m2, respectively.

Table 5.  Evidence Table of Outcomes in HF in Subjects With CKD Treated With ARBs

Study n Study Design Population CKD
Concomitant 

Therapy
Baseline Renal 

Function Outcome in CKD Group

Val-HeFT 48 5010 RCT, valsartan vs 
placebo

Symptomatic HF, 
EF <40%

Exclude: Cr >2.5 
mg/dL

CKD ≥2: 58%

Proteinuria 
without CKD: 
52%

β-Blocker 35%

Digoxin 67%

GFR 58 mL/min 
per 1.73 m2

All-cause mortality: HR, 1.01 
(95% CI, 0.85–1.20)

CHARM-
Overall 173

7599 RCT, candesartan 
vs placebo

Symptomatic HF, 
EF <40%

Exclude: Cr >3 
mg/dL

CKD: Cr >2 
mg/dL

β-Blocker 55%

MRA 17%

NA Hyperkalemia: 
Cr >2 vs <2: HR, 4.1 (95% CI, 
2.4–7.3)

Serious hyperkalemia: Cr >2 vs 
<2: HR, 3.5 (95% CI, 1.5–7.9)

HEAAL 174 3846 High- vs low-
dose losartan

Symptomatic 
HF, EF <40%, 
intolerance of 
ACE inhibitor

Exclude: Cr >2.5 
mg/dL

ACE inhibitor 
100%

β-Blocker 72%

MRA 38%

Cr 1.1 mg/dL Death and HF admission  
GFR: 
<60 mL/min per 1.73 m2: HR, 
0.98 (95% CI, 0.85–1.13)

60–74: HR, 0.94 (95% CI, 
0.78–1.14)

>75: HR, 0.72 (95% CI, 
0.60–0.86)

ELITE 175 722 Captopril vs 
losartan

Symptomatic HF, 
EF <40%

Exclude: Cr >2.5 
mg/dL

ACE inhibitor 
100%

β -Blocker72%

Cr 1.2 mg/dL Worsening renal function in all 
groups: 2% (−51% to 36%)

ACE indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CHARM, Candesartan in Heart Failure Assessment of Reduction in 
Mortality and Morbidity; CKD, chronic kidney disease; Cr, creatinine; EF, ejection fraction; ELITE, Evaluation of Losartan in the Elderly; GFR, glomerular filtration 
rate; HEAAL, Heart failure Endpoint Evaluation of Angiotensin II Antagonist Losartan; HF, heart failure; HR, hazard ratio; MRA, mineralocorticoid receptor 
antagonist; NA, not applicable; RCT, randomized controlled trial; and Val-HeFT, Valsartan in Heart Failure.
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In summary, there are varying levels of evidence for 
goal-directed therapies for HF in the CKD population, 
with a relative paucity of data in patients with advanced 
CKD. 195 Figure  4 provides a summary of the relative 
strengths of evidence in the use of goal-directed medi-
cal therapies for HF across the spectrum of GFR ranges 
for nondialytic CKD.

CARDIORENAL OUTCOMES IN TYPE 2 
DIABETES MELLITUS
Cardiovascular disease is a major cause of mortality in 
patients with type 2 diabetes mellitus (T2DM). 196 Met-
formin is highly effective, has a very low risk of hypo-
glycemia, does not cause weight gain, and may reduce 
cardiovascular events and mortality. Therefore, it is 
generally recommended as first-line medical therapy 
for most patients with T2DM when added to lifestyle 
modification. 197–199 However, many patients do not  
achieve adequate control with metformin alone, and 
second and even third medications are often neces-
sary, 198,199 Given the impact of glycemic control on car-
diovascular outcomes and the increased cardiovascular 
risk that was associated with certain glucose-lowering 
medications, the US Food and Drug Administration 

outlined the need for cardiovascular safety studies for 
new glucose-lowering therapies in 2008. 200,201 Sub-
sequently, several trials have reported cardiovascular 
safety data across multiple classes of glucose-lowering 
drugs, including GLP-1 (glucagon like peptide-1) recep-
tor agonists, DPP-4 (dipeptidyl peptidase-4) inhibitors, 
and SGLT-2 (sodium-glucose cotransporter 2) inhibitors, 
and other trials are ongoing at the time this statement 
was written. In this section, we highlight key aspects of 
recently reported safety and cardiovascular outcomes 
data of the major novel classes of antidiabetic therapy.

SGLT-2 Inhibitors
SGLT-2 inhibitors are one of the latest classes of glu-
cose-lowering therapies available. One SGLT-2 inhibi-
tor, empagliflozin, demonstrated impressive results in 
the multicenter randomized cardiovascular safety trial 
EMPA-REG OUTCOME (Empagliflozin Cardiovascular 
Outcome Event Trial in Type 2 Diabetes Mellitus). 202 
The EMPA-REG OUTCOME Trial randomized 7020 
patients with T2DM at high risk for cardiovascular 
events to receive empagliflozin versus placebo. The 
trial showed a 14% RRR for the primary composite 
3-point major adverse cardiovascular event outcome 
of cardiovascular death, nonfatal MI, and nonfatal 

Table 6.  Evidence Table of Outcomes in HF in Subjects With CKD Treated With MRAs

Study n Study Design Population CKD
Concomitant 

Therapy
Baseline Renal 

Function Outcome in CKD Group

RALES 184 1663 RCT, 
spironolactone 
vs placebo

HF, EF <35% Exclude: Cr >2.5 
mg/dL

CKD: GFR <60 
mL/min per 1.73 
m2 (48%)

ACE inhibitor 
94%

Digoxin 78%

Cr 1.2 mg/dL All-cause mortality: HR, 
0.68 (95% CI, 0.56–0.84)

Worsening renal function: 
spironolactone vs placebo 
17% vs 7%

EMPHASIS-HF 185 2737 Eplerenone vs 
placebo

HF, EF<35% Exclude: GFR 
<30 mL/min per 
1.73 m2

CKD: 
CKD >3a: 33%

ACE inhibitor 
93%

β-blocker 87%

GFR 71 mL/min 
per 1.73 m2

HR, 0.66 (95% CI, 
0.56–0.78)

No difference between 
subgroups with and 
without CKD

ARTS-HF 186 1066 RCT, 
finerenone 
with dosage 
uptitrated vs 
eplerenone

HFrEF with EF 
<40%, DM 
with CKD (GFR 
>30 cc/min per 
1.73 m2), CKD 
without DM 
(GFR 30-60 cc/
min per 1.73 
m2) 

Exclude: GFR 
<30 mL/min per 
1.73 m2

CKD: 
CKD >3a: 71%

NA GFR 53 mL/min 
per 1.73 m2

Decrease in BNP >30%: 
same in both groups

Any adverse event: 
finerenone less than 
eplerenone (76.9%) except 
finerenone 15–20 mg 
(78.5%)

Death, cardiovascular 
hospitalization, worsening 
CHF: finerinone better 
than eplerenone except 
finerenone 2.5–5mg 

Hyperkalemia: 
finerinone better than 
eplerenone except 
finerenone 15–20 mg

ACE indicates angiotensin-converting enzyme inhibitor; ARTS-HF, Mineralocorticoid Receptor Antagonist Tolerability Study–Heart Failure; BNP, B-type 
natriuretic peptide; CHF, congestive heart failure; CKD, chronic kidney disease; Cr, creatinine; DM, diabetes mellitus; EF, ejection fraction; EMPHASIS-HF, 
Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure; GFR, glomerular filtration rate; HF, heart failure; HFrEF, heart failure with reduced 
ejection fraction; HR, hazard ratio; MRA, mineralocorticoid receptor antagonist; NA, not applicable; RALES, Randomized Aldactone Evaluation Study; and RCT, 
randomized controlled trial.
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stroke in patients who received empagliflozin com-
pared with placebo (HR, 0.86 [95% CI, 0.74–0.99]; 
P<0.001 for noninferiority). The major adverse car-
diovascular event risk reduction was driven primar-
ily by a 38% RRR in cardiovascular death (HR, 0.62 
[95% CI, 0.49–0.77]; P<0.001 for noninferiority, 
P<0.04 for superiority). In addition, the trial showed 
a 35% RRR for HF-related hospitalizations (HR, 0.65 
[95% CI, 0.50–0.85]) with a greater impact in pre-
venting first HHF and a lesser impact on prevalent HF.  
Although renal end points were not the primary out-
come in the trial, several prespecified renal outcomes 
were analyzed, including incident or worsening ne-
phropathy (progression to macroalbuminuria, dou-
bling of serum creatinine, initiation of renal replace-
ment therapy, or death resulting from renal disease) 
and incident albuminuria (urine albumin to creatinine 
ratio >30 mg/g). In a post hoc analysis of renal com-
posite outcomes, empagliflozin was associated with a 
39% RRR of incident or worsening nephropathy ver-
sus placebo (HR, 0.61 [95% CI, 0.55–0.69]). 203 Using 
adjusted mean differences in eGFR between groups 
after cessation of the study drug and factoring in the 
expected GFR decline in patients with T2DM of ≈4 mL/
min per 1.73 m2, the reduction in CKD progression 
could be translated into delaying the need for dialysis 
by ≈1 year. 204 Finally, although designed as a safety 
trial, the cardiovascular outcomes reported tested for 
both noninferiority and superiority.

The CANVAS program (Canagliflozin Cardiovascular 
Assessment Study), comprising 2 sister trials, was de-
signed to assess the cardiovascular safety and efficacy 
of canagliflozin and to evaluate the balance between 
any potential benefits of the drug and the risks asso-
ciated with it such as genitourinary infection, diabetic  

ketoacidosis, limb amputation, and fracture. 205 The CAN-
VAS program integrated data from 2 trials involving a 
total of 10 142 participants with T2DM and high car-
diovascular risk who were randomly assigned to receive 
canagliflozin or placebo. In the total cohort, the primary 
end point (composite of cardiovascular death, nonfatal 
MI, or nonfatal stroke) was reduced with canagliflozin 
compared with placebo (26.9 versus 31.5 per 1000 
patient-years; HR, 0.86 [95% CI, 0.75–0.97]; P<0.001 
for noninferiority, P=0.02 for superiority). A possible 
benefit of canagliflozin with respect to the progression 
of albuminuria (HR, 0.73 [95% CI, 0.67–0.79]) and 
the composite outcome of a sustained 40% reduction 
in the eGFR, the need for renal replacement therapy, 
or death resulting from renal causes was also shown 
(HR, 0.60 [95% CI, 0.47–0.77]). An increased risk of 
amputation, primarily at the level of the toe or meta-
tarsal, was reported with the use of canagliflozin (6.3 
versus 3.4 participants per 1000 patient-years; HR, 1.97 
[95% CI, 1.41–2.75]), provoking a US Food and Drug 
Administration drug safety communication to this ef-
fect. 205,206 Risks for amputation were greater in those 
with baseline peripheral artery disease and even greater 
in those with prior amputations before enrolling in the 
trial. On this continuum, a post hoc analysis of EMPA-
REG OUTCOME did not show a difference in the inci-
dence of lower limb amputations between treatment 
groups, but it was limited by manual identification of 
these adverse events retrospectively. 206 Finally, Verma 
et al 207 reported no increase in lower limb amputation 
incidence between groups in a subanalysis of patients 
with T2DM with peripheral artery disease from EMPA-
REG OUTCOME. Because limb revascularization can 
spare patients with peripheral artery disease the ampu-
tation procedure, the regional availability of peripheral 
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Figure 4. Relative levels of strength of evidence for goal-directed medical therapies in heart failure with reduced ejection fraction across varying 
stages of nondialytic chronic kidney disease (CKD).  
ACEi indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor neprilysin inhibitor; CRT, cardiac resynchro-
nization therapy; H, hydralazine; ICD, implantable cardioverter-defibrillator; ISDN, isosorbide dinitrate; and MRA, mineralocorticoid receptor antagonist. 
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artery intervention/surgery may have accounted for the 
variability in reported rates of amputation across trial 
programs. Currently, it is unknown whether the ampu-
tation risk is specific to canagliflozin or extends to other 
drugs in this class; however, given the biologically plau-
sible off-target effects of SGLT-2 inhibitors, including 
impairment of the sodium-hydrogen exchanger, which 
manages cellular pH in ischemia/reperfusion, it is rea-
sonable to avoid this drug class in patients at risk for 
lower limb ischemia. 208

The CVD-REAL study (Comparative Effectiveness of 
Cardiovascular Outcomes in New Users of SGLT-2 Inhib-
itors) was an internationally conducted observational 
study that compared risk of HHF and all-cause mortality 
in 309 056 patients newly initiated on either SGLT-2 in-
hibitors or other glucose-lowering drugs after propen-
sity matching. 209 Canagliflozin, dapagliflozin, and em-
pagliflozin accounted for 53%, 42%, and 5% of the 
total exposure time in the SGLT-2 inhibitor class, respec-
tively. Use of SGLT-2 inhibitors versus other glucose-
lowering drugs was associated with lower rates of HHF 
(HR, 0.61 [95% CI, 0.51–0.70]), death (HR, 0.49 [95% 
CI, 0.41–0.57]), and HHF or death (HR, 0.54 [95% CI, 
0.48–0.60]). These data suggest that the benefits seen 
with empagliflozin in a randomized trial may be a class 
effect applicable to a broad population of patients with 
T2DM. Ongoing trials, including DECLARE-TIMI 58  
(Effect of Dapagliflozin on the Incidence of Cardiovas-
cular Events–Thrombolysis in Myocardial Infarction 58), 
REFORM (Safety and Effectiveness of SGLT-2i in Patients 
With Heart Failure and Diabetes), VERTIS (Cardiovascu-
lar Outcomes Following Ertugliflozin Treatment in Type 
2 Diabetes Mellitus Participants With Vascular Disease), 
and CREDENCE (Canagliflozin and Renal Endpoints in 
Diabetes with Established Nephropathy Clinical Evalu-
ation), will help shed light on the class and individual 
drug effects of SGLT-2 inhibitors on cardio-reno-meta-
bolic outcomes

Incretin-Based Therapies
GLP-1 Agonists
GLP-1, an insulin-tropic hormone secreted in the gut 
after food intake, is the parent compound mediating 
the effect of 2 classes of glucose-lowering medications: 
GLP-1 receptor agonists and DPP-4 inhibitors. 210 In the 
double-blind LEADER trial (Liraglutide and Cardiovascu-
lar Outcomes in Type 2 Diabetes), 9340 patients with 
T2DM and high cardiovascular risk were randomized to 
liraglutide versus placebo in a noninferiority design. 211 
The primary composite outcome in the time-to-event 
analysis of the first occurrence of death resulting from 
cardiovascular causes, nonfatal MI, or nonfatal stroke 
occurred in significantly fewer patients in the liraglu-
tide group (608 of 4668 patients, 13.0%) than in the 
placebo group (694 of 4672, 14.9%; HR, 0.87 [95% 

CI, 0.78–0.97]; P<0.001 for noninferiority, P=0.01 for 
superiority). SUSTAIN-6 (Trial to Evaluate Cardiovascular 
and Other Long-Term Outcomes With Semaglutide in 
Subjects With Type 2 Diabetes) showed that semaglu-
tide significantly reduced the primary composite end 
point of cardiovascular death, nonfatal MI, or nonfa-
tal stroke (HR, 0.74 [95% CI, 0.58–0.95]; P<0.001 for 
noninferiority). 212 These beneficial effects were driven 
mostly by a significant (39%) reduction in the rate of 
nonfatal stroke and a nonsignificant (26%) decrease in 
nonfatal MI, with no significant difference in the rate of 
cardiovascular death. Moreover, treatment with sema-
glutide increased retinopathy complications (HR, 1.76 
[95% CI, 1.11–2.78]; P=0.02). Mann et al 211 reported 
a significant reduction with liraglutide in the prespeci-
fied secondary renal outcome of the composite of new-
onset persistent macroalbuminuria, persistent doubling 
of the serum creatinine level, ESKD, or death caused 
by renal disease in the LEADER trial (HR, 0.78 [95% CI, 
0.67–0.92]). This outcome was driven largely by a re-
duction in new onset of persistent macroalbuminuria.

The EXSCEL trial (Effects of Once-Weekly Exenatide 
on Cardiovascular Outcomes in Type 2 Diabetes) ran-
domized 14 752 patients with T2DM with or without 
prior cardiovascular disease to weekly exenatide or pla-
cebo with a median follow-up of 3.2 years. 213 A primary 
composite outcome event occurred in 839 of 7356 pa-
tients (11.4%; 3.7 events per 100 person-years) in the 
exenatide group and in 905 of 7396 patients (12.2%; 
4.0 events per 100 person-years) in the placebo group 
(HR, 0.91 [95% CI, 0.83–1.00]), with the intention- 
to-treat analysis indicating that exenatide, administered 
once weekly, was noninferior to placebo with respect to 
safety (P<0.001 for noninferiority) but was not superior 
to placebo with respect to efficacy (P=0.06 for superior-
ity). These results are comparable to results for lixisena-
tide in the ELIXA trial (Lixisenatide in Patients With Type 
2 Diabetes and Acute Coronary Syndrome). 214 Ongoing 
studies on dulaglutide testing for cardiovascular safety 
will present results in the future (NCT 13944952).

DPP-4 Inhibitors
The first cardiovascular outcome trials on DPP-4 in-
hibitors reported neutral effects on the composite of 
major adverse cardiovascular event outcomes. These 
include SAVOR-TIMI 53 (Saxagliptin and Cardiovascular 
Outcomes in Patients With type 2 Diabetes Mellitus–
Thrombolysis in Myocardial Infarction 53), 215 EXAMINE 
(Alogliptin After Acute Coronary Syndrome in Patients 
With Type 2 Diabetes Trial), 216 and TECOS (Sitagliptin 
on Cardiovascular Outcomes in Type 2 Diabetes). 217 
An analysis of the prespecified secondary end point of 
HHF in the SAVOR-TIMI 53 trial showed a higher risk 
of HHF in patients treated with saxagliptin versus pla-
cebo (HR, 1.27 [95% CI, 1.07–1.51]). 218 This increase 
in risk was highest among patients with elevated levels 
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of natriuretic peptides, previous HF, or CKD. In a post 
hoc analysis of the end points of cardiovascular death 
and HHF in the EXAMINE trial, alogliptin had no effect 
on composite events of cardiovascular death and hospi-
tal admission for HF (HR, 1.00 [95% CI, 0.82–1.21]). 219 
A prespecified analysis of HHF, HHF or cardiovascular 
death, and HHF or all-cause death composite outcomes 
in the TECOS trial showed no significant differences in 
these outcomes between sitagliptin and placebo. 220 Po-
tential explanations for the inconsistent effects of HHF 
across these 3 major cardiovascular outcome studies 
include differing baseline characteristics of severity of 
disease, hemoglobin A1c, sample size, and degree of 
CKD (moderate to severe). Additional possibilities in-
clude effects of hypoglycemia and altered degradation 
of substance P and neuropeptide Y, ultimately resulting 
in sympathetic-mediated vasoconstriction. 221 The CAR-
MELINA trial (Cardiovascular and Renal Microvascular 
Outcome Study With Linagliptin in Patients With Type 
2 Diabetes Mellitus; NCT01897532) and CAROLINA 
trial (Cardiovascular Outcome Trial of Linagliptin Versus 
Glimepiride in Type 2 Diabetes; NCT01243424) will pro-
vide new data on the DPP-4 inhibitor linagliptin.

Finally, the emerging pandemic of obesity is a central 
factor contributing to the maladaptive elements of in-
sulin resistance, hypertension, dyslipidemia, and chronic 
inflammation central to the cardio-renal-metabolic syn-
drome. Both obesity and insulin resistance are major risk 
factors for HFpEF, with impaired insulin metabolic sig-
naling, increased inflammation, and reduced availabil-
ity of nitric oxide contributing to impaired diastolic me-
chanics. 222 Similarly, a strong correlation exists between 
obesity and proteinuria or impaired kidney function, 
especially with insulin resistance. 223 Population-based 
strategies targeting obesity are critical in the efforts to 
reduce the prevalence of cardio-renal-metabolic syn-
drome, which represents a major burden with regard 
to morbidity, mortality, and healthcare costs worldwide.

CARDIAC DEVICE THERAPY
Implantable Cardioverter-Defibrillators  
in CKD
Given the high prevalence of CKD in patients with HF 
and vice versa, implantable device therapy is part of 
the therapeutic armamentarium in this population. Al-
though the benefits of placement of implantable car-
dioverter-defibrillators (ICDs) in patients with HF meet-
ing select criteria are well established in the general 
population, 224 conflicting data exist on the benefits in 
patients with HF and CKD. Reduced survival has been 
consistently described with primary prevention ICDs in 
CKD, as well as higher complication rates, which in-
clude higher infection rates and greater bleeding, cen-
tral venous stenosis, and tricuspid regurgitation. 225–227 

Patients with CKD may have higher defibrillation 
thresholds than the general population. 228 Pun et al 229 
reported outcomes with ICDs for primary prevention 
in CKD in a meta-analysis of 3 primary prevention ICD 
RCTs that had data available on renal function: MADIT 
(Multicenter Automatic Defibrillator Implantation Trial) 
I, MADIT-II, and SCD-HeFT (Sudden Cardiac Death in 
Heart Failure Trial). ICDs were associated with survival 
benefit in patients with GFR >60 mL/min per 1.73 m2 
(adjusted HR, 0.49 [95% posterior credible interval, 
0.24–0.95]). This was not the case for patients with 
GFR <60 mL/min per 1.73 m2 (adjusted HR, 0.80 [95% 
posterior credible interval, 0.40–1.53]), in whom eGFR 
did not modify the association between ICDs and re-
hospitalizations. These findings corroborate data from 
a propensity-matched analysis to determine the survival 
benefits with primary prevention ICDs in nondialytic 
CKD from the Cleveland Clinic CKD Registry. 230 In this 
analysis, the presence of an ICD was associated with a 
lower risk of death among those with eGFRs of 45–59 
mL/min per 1.73 m2 (HR, 0.58 [95% CI, 0.44–0.77]) and 
30 to 44 mL/min per 1.73 m2 (HR, 0.65 [95% CI, 0.50–
0.85]) but not among those with eGFRs <30 mL/min 
per 1.73 m2 (HR, 0.98 [95% CI, 0.71–1.35]). Recently, 
the DANISH trial (Danish Study to Assess the Efficacy 
of ICDs in Patients With Non-Ischemic Systolic HF on 
Mortality) showed that prophylactic ICD implantation 
in patients with HFrEF not caused by coronary artery 
disease had no impact on mortality resulting from any 
cause, including in patients with CKD. 231 However, a 
meta-analysis by Chen et al 232 specifically included data 
from RCTs on patients with ESKD and HF who received 
an ICD and showed that overall survival and 2-year sur-
vival were improved in patients with ICD placement. 
Given that patients with advanced CKD are routinely 
excluded from major cardiovascular therapy trials and 
the lack of robust data on survival benefits, decisions 
to place ICDs for primary prevention in advanced CKD 
and ESKD must consider patient comorbidities, frailty, 
and quality of life to balance the risk-benefit profiles 
with these devices.

Subcutaneous ICDs in CKD
Given the increased complication rates with ICDs that 
are highly pertinent to the CKD population, subcutane-
ous ICDs (S-ICDs) have emerged as a potential attractive 
alternative and offer similar efficacy in pilot data. 233 Two 
separate single-center experiences reported the safety 
of the use of S-ICDs in ESKD, and no device-related in-
fections or excessive inappropriate shocks were report-
ed. 234,235 The global EFFORTLESS S-ICD registry (Evalua-
tion of Factors Impacting Clinical Outcomes and Cost 
Effectiveness of the S-ICD) reported predefined end 
points of 30-day and 360-day complications and shocks 
for atrial fibrillation and supraventricular tachycardia. 236 
Midterm performance rates on complications, inap-
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propriate shocks, and conversion efficacy were compa-
rable to rates observed with transvenous ICDs. In that 
registry, 8.6% of patients in the S-ICD arm had CKD 
at baseline. The presence of CKD was an independent 
predictor of therapy for polymorphic ventricular tachy-
cardia or ventricular fibrillation (HR for any appropriate 
therapy with CKD, 2.10 [95% CI, 1.72–4.10]; P=0.012; 
HR for appropriate therapy for polymorphic ventricular 
tachycardia/ventricular fibrillation with CKD, 2.35 [95% 
CI, 1.19–4.64]; P=0.014). These findings are significant 
in terms of the greater proportion of patients with CKD 
included in this trial compared with prior studies and 
the proof of safety and efficacy at midterm time points. 
Long-term follow-up data anticipated from this cohort 
will help define the role of S-ICD in the CKD population.

Cardiac Resynchronization Therapy
Cardiac resynchronization therapy (CRT) uses a biven-
tricular pacemaker that electrically activates the RV 
and LV in a synchronized manner, which improves ven-
tricular contraction and reduces the degree of mitral 
regurgitation. A meta-analysis of 14 RCTs with patients 
with moderate to severe LV systolic dysfunction with 
widened QRS demonstrated that CRT significantly im-
proved LVE and quality of life, in addition to reducing 
all-cause mortality by 22%. 237 Most RCTs have report-
ed few data on patients with CKD with HF. However 
observational data and post hoc analyses have shed 
some light on outcomes with CRT in CKD. The MIR-
ACLE study (Multicenter InSync Randomized Clinical 
Evaluation) evaluated CRT in HF in patients with NHYA 
class III to IV disease and EF <35%. This trial exclud-
ed patients with a serum creatinine >3 mg/dL, but a 
post hoc analysis found improvements in NYHA class 
and EF and a reduction in mitral regurgitation across 
groups with eGFR >90, 60 to 89, and 30 to 59 mL/
min per 1.73 m2. 238,239 In the baseline eGFR category 
of 30 to 59 mL/min per 1.73 m2, an improvement in 
eGFR was noted that was statistically significant. This 
phenomenon has also been reported in several other 
studies, 240–243 likely signifying the beneficial effects of 
improved perfusion and reduced venous congestion. 
However, despite these benefits, the presence of base-
line CKD per se has a negative impact on post-CRT 
outcomes, as described in a meta-analysis by Bazoukis 
et al. 244 In this meta-analysis, 13 of 16 studies showed 
a statistically significant higher risk of all-cause mortal-
ity in patients with baseline CKD who underwent CRT. 
In addition, patients with baseline eGFR <60 mL/min 
per 1.73 m2 had an increased risk of death resulting 
from all causes (HR, 1.66 [95% CI, 1.37–2.02]) com-
pared with patients with eGFR >60 mL/min per 1.73 
m2. Although these data are important when making 
decisions about the risk-benefit profiles of CRT in pa-
tients with CKD, the benefits for reduced hospitaliza-

tions and improved quality of life with CRT compared 
with ICD in CKD should also be factored into the deci-
sion algorithm. This is ultimately achieved with a mul-
tidisciplinary cardionephrology collaborative approach 
to achieve improved outcomes with arrhythmia bur-
den reduction and improvement in quality of life while 
minimizing device-related complications (Table 7).

Mechanical Circulatory Support and 
Kidney Function
The use of mechanical circulatory support devices is 
increasing exponentially in the acute setting of cardio-
genic shock and circulatory support during high-risk 
coronary interventions, for destination therapy in pa-
tients with advanced HF, or as a bridge to cardiac trans-
plantation or recovery. 245,246 A full description of the 
renal impact of short-term and maintenance mechani-
cal circulatory support devices is beyond the scope of 
this scientific statement; the literature provides a sum-
mary. 246–248 At this time, randomized controlled data on 
head-to-head comparisons between various short-term 
mechanical circulatory support devices on renal func-
tion are lacking. However, in a single-center experience, 
Flaherty et al 249 demonstrated a reduction in AKI rates 
with Impella 2.5 (percutaneous ventricular assist device) 
support during high-risk percutaneous coronary inter-
ventions. The effects of continuous versus pulsatile LV 
assist devices on renal morphology and physiology have 
been described in animal models. 250 Reduced pulsatile 
circulation may activate local RAAS, which may have 
proinflammatory effects and may potentially result in 
increased vascular stiffness. Smooth muscle hypertro-
phy of the renal cortical arteries, interstitial nephritis, 
and periarteritis have also been shown to develop in 
animal models of continuous perfusion. 251 Welp et al 252 
demonstrated lower levels of renin and angiotensin in 
subjects with pulsatile- versus continuous-flow LV assist 

Table 7.  Clinical Considerations in Patients With Advanced CKD 
Before Placement of Implantable Cardiac Devices

Is there a clear survival benefit in the given patient with device placement? 
If so, has this been considered by a cardiorenal multidisciplinary team, and 
has the risk-benefit profile been discussed clearly with the patient?

Has pharmacotherapy for HF been optimized to the extent feasible before 
device therapy was considered?

If the patient has advanced CKD, have vascular access needs been factored 
into the decision to implant a cardiac device?

Can subcutaneous or epicardial devices be considered?

How can the dialysis prescription be tailored to reduce rapid flux of 
electrolytes and fluid shifts?

What strategies can be adopted to reduce the risk of bacteremias with a 
device in place?

Does the decision to place a cardiac device for either symptom control or 
potential survival benefits integrate into the overall goals and plan of care 
for the individual patient?

CKD indicates chronic kidney disease; and HF, heart failure. 
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devices; however, the long-term clinical implications of 
this observation are unclear. Finally, several clinical fac-
tors affect long-term kidney function in patients with 
maintenance mechanical circulatory support, including 
preexisting CKD, device-related malfunction or subclini-
cal hemolysis, progressive RV failure with prolonged LV 
assist device support, and the chronic maladaptive neu-
rohumoral changes seen in patients with these devices.

HF AND KIDNEY TRANSPLANT
KT is the treatment of choice for patients with ESKD, 
resulting in improved quantity and quality of life at 
lower cost to the healthcare system than long-term di-
alysis. 253,254 HF is a major cause of morbidity and mor-
tality in patients with ESKD, with a reported prevalence 
among patients on dialysis of 12 to 36 times that of the 
general population. 255–257 In a historic cohort study of 
>1900 patients enrolled in the US Renal Data System 
Dialysis Morbidity and Mortality Study Wave 2, the inci-
dence of HF was 71 per 1000 person-years, and associ-
ated 3-year mortality after HHF was 83%. 258 de Mattos 
et al 259 demonstrated a strong correlation between re-
duced EF and mortality in a population selected for KT 
wait listing such that every 1-point increase in LVEF was 
associated with a 2.5% decrease in adjusted mortality 
risk. The ongoing burden of HF after KT is illustrated 
by the increasing contribution of HF to cardiovascular 
disease–related hospitalizations after KT since 2005, 
with HF accounting for 16% of all hospitalizations. 260

Impact of KT on HFrEF 
An improvement in LVEF after KT in patients with HF 
before transplantation has been described in several 
single-center experiences. 261–263 Wali et al 264 described 
a cohort of 103 patients with LVEF <40% (mean EF, 
31.6±6.7%) with a median of 2 HHFs before KT evalu-
ation. Of this cohort, 51% had documented coronary 
artery disease but none had inducible ischemia at the 
time of transplantation. Patients were further strati-
fied by post-KT EF into 3 groups: group 1, EF >50%; 
group 2, EF of 40% to 50%; and group 3, EF <40%. 
Although post-KT mortality rose with lower baseline EF 
(group 1, 8%; group 2, 62%; group 3, 62%; P<0.001), 
most patients experienced an improvement in EF with 
KT. Specifically, by 1 year after KT, 72 of 103 patients 
(70%) had an EF >50%, and 16 patients improved their 
EF to 40% to 50%. Overall, 86% of patients had an EF 
improvement of at least 5% by multigated acquisition 
scanning. Longer pre-KT dialysis duration was the only 
factor that independently predicted failure to improve 
LVEF. Reversal of uremic cardiomyopathy after KT has 
also been described in case reports, including clinically 
important improvements in EF, LV end-diastolic dimen-
sions, and the degree of mitral regurgitation. 265

De Novo/Preexisting LV Dysfunction and 
Renal Allograft Outcomes
Lentine et al 266 described the risk, predictors, and out-
comes associated with de novo HF after KT among Medi-
care-insured KT candidates and recipients captured in 
the US Renal Data System. Among 27 011 KT recipients 
(1995–2011), the cumulative incidence of de novo HF 
was 10.2% at 12 months and 18.3% at 36 months and 
decreased to less than the demographic-adjusted inci-
dence on the waiting list beyond the early posttransplan-
tation period. De novo HF predicted death (HR, 2.6 [95% 
CI, 2.4–2.9]) and death-censored graft failure (HR, 2.7 
[95% CI, 2.4–3.0]) in this cohort. A report of a 2-center 
retrospective Canadian study of 638 KT recipients who 
were free of cardiac disease 1 year after transplantation 
described the risk factors, incidence, and relationships 
between de novo HF and ischemic heart disease after 
KT (median follow-up, 7 years). 267 De novo HF occurred 
as frequently as de novo ischemic heart disease (1.26 
versus 1.22 events per 100 patient-years, respectively) 
and appeared to carry a similar prognosis (mortality: RR, 
1.78 [95% CI, 1.21–2.61] for HF versus RR,1.50 [95% 
CI, 1.05–2.13] for ischemic heart disease). The incidence 
of HF was considerably higher than in the Framingham 
cohort, whereas the incidence of ischemic heart disease 
was not, raising the possibility that KT might correspond 
more to a state of accelerated HF than to accelerated 
atherosclerosis. In a single-center experience of 653 
KT recipients, 18% had an EF <45% based on single-
photon emission computed tomography imaging before 
transplantation. Over an average of 3 years of follow-up, 
LV dysfunction was an independent predictor of cardiac 
death (HR, 4.8 [95% CI, 2.09–11.21]), overall mortality 
(HR, 2.0; P=0.01), and cardiac hospitalizations. 268 An-
other study compared 19 KT recipients with preexisting 
EF <50% with paired control subjects who received a 
kidney from the same donor but did not have reduced 
EF. 269 Patients with reduced EF experienced higher rates 
of delayed graft function, as well as longer renal recovery 
time, before becoming dialysis free (19.8 days versus 12 
days; P=0.01). These data underscore the impact of both 
preexisting and new-onset LV dysfunction on allograft 
and patient outcomes after KT.

Management of HF in KT
There are limited controlled data on the optimal pharma-
cotherapy of HF specific to KT recipients. Management 
of HF in the context of KT involves integrating available 
evidence-based therapies for HF in CKD (based on the 
degree of allograft function), transplantation-specific 
factors such as immunosuppressive agent choice, and 
factors influencing patient and allograft outcomes such 
as rejection episodes and the development of new-on-
set diabetes mellitus after transplantation.
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There is conflicting evidence on the efficacy of RAAS 
inhibition and HF outcomes in KT recipients. Paoletti et 
al 270 randomized 70 KT recipients on standard immu-
nosuppression with calcineurin inhibitors (cyclosporine 
or tacrolimus), mycophenolate mofetil, and steroids to 
lisinopril versus usual care. Event-free survival for a com-
posite end point of death, major cardiovascular events, 
renal graft loss, or creatinine doubling was analyzed ac-
cording to a modified intention-to-treat analysis. Com-
pared with control subjects, the ACE inhibitor group 
had significantly better survival free of the combined 
end point (P=0.01) and free of major cardiovascular 
events (P=0.003), but no significant differences in renal 
outcomes were noted. In Cox regression analysis, ACE 
inhibitor therapy was the strongest predictor of survival 
free of major cardiovascular events (HR, 0.21 [95% CI, 
0.07–0.64]). In contrast, SECRET (Study on Evaluation 
of Candesartan Cilexetil After Kidney Transplantation), 
which randomized 700 KT recipients to candesartan 
versus placebo, was terminated prematurely after a 
mean follow-up of 20 months because of a much lower 
than expected rate of the primary outcome of all-cause 
mortality, cardiovascular morbidity, or graft failure. 
Knoll et al 271 randomized 213 KT recipients to ramipril 
versus placebo in an intention-to-treat trial with a pri-
mary outcome of all cause death, ESKD, or doubling 
of serum creatinine. The primary outcome occurred in 
17% of patients (19 of 109) in the placebo group and 
14% (14 of 103) in the ramipril group (HR, 0.76 [95% 
CI, 0.38–1.51]). At 48 months, the primary outcome 
occurred in 25% of the placebo group and 24% of the 
ramipril group (HR, 0.96 [95% CI, 0.55–1.65]; absolute 
risk difference, −0.5% [95% CI, −12.0 to 11.1]). Four-
teen percent of patients in the ramipril group and 10% 
in the placebo group died over the follow-up, but this 
difference in mortality was not statistically significant 
(HR, 1.45 [95% CI, 0.66–3.21]). Adverse events were 
more common in the ramipril group than in the placebo 
group (38% versus 22%; P=0·02). In a meta-analysis 
of 8 trials examining clinical outcomes with RAAS in-
hibition in KT recipients by Hiremath et al, 158 only 1 
trial specifically used HF as a primary outcome. No dif-
ference in all-cause mortality was observed with ACE 
inhibitor/ARB therapy versus placebo (RR for all-cause 
death, 0.96 [95% CI, 0.62–1.51]; P=0.9). A significant-
ly higher risk for hyperkalemia with RAAS blockade was 
noted (RR, 2.44 [95% CI, 1.53–3.90]). Currently, there 
is a paucity of data on the impact of pretransplantation 
dialysis modality, β-blockers, vasodilators, and MRAs on 
HF outcomes after KT, highlighting the need for future 
studies to optimize outcomes.

Impact of PH on KT Outcomes
PH is highly prevalent in patients with CKD and is as-
sociated with worse post-KT outcomes. In a cohort of 

215 KT recipients, Issa et al 272 found that compared 
with RV systolic pressure <50 mm Hg before KT, a PA 
systolic pressure >50 mm Hg was associated with nearly 
4 times the post-KT mortality over a mean follow-up 
of 22.8 months (HR, 3.75; P=0.025). Zlotnick et al 273 
demonstrated an association of PH with early kidney 
allograft dysfunction after deceased donor transplanta-
tion. In a cohort of 638 KT recipients, patients with (ver-
sus without) PH before transplantation had lower graft 
survival rate at 5 years (54.6% versus 76.0%; P<0.05) 
and were nearly twice as likely to experience all-cause 
graft failure (crude HR, 1.80 [95% CI, 1.55–2.08]; ad-
justed HR, 1.3 [95% CI, 1.11–1.51]) during the study 
period. 274 In a single-center cohort of 35 simultane-
ous heart-kidney transplant recipients (1996–2015), 
preoperative RV systolic pressure was higher in those 
with (versus without) delayed graft function of the re-
nal allograft (45.2±13 mm Hg versus 36.5±10 mm Hg; 
P=0.03). 275 There was also a significant association be-
tween delayed graft function and reduced median GFR 
at 1 and 3 years after transplantation, underscoring 
the impact of preoperative PH on short- and long-term 
renal allograft outcomes in simultaneous heart-kidney 
transplant recipients. The complexity and multifactorial 
pathogenesis of PH in potential KT candidates warrants 
a careful multidisciplinary evaluation to allow detection 
and optimization of PH before transplantation given 
the significant impact on post-KT outcomes. 276 A com-
prehensive approach to management of PH in KT can-
didates is summarized in Figure 5.

PALLIATIVE CARE IN CRS
The backdrop of high mortality, healthcare resource 
use, and poor quality of life with advanced CRS sug-
gests that these patients would benefit from concur-
rent involvement with palliative care. 277 The interlinked 
cycle of heart and kidney failure clinically manifests with 
symptoms related to volume overload and an ineffec-
tive cardiac pump: dyspnea, fatigue, and chronic pain. 
In addition to these symptoms being the most common 
in the HF and CKD populations, depression is another 
highly prevalent symptom in these diseases, with the 
symptom burden with HF and advanced CKD being 
comparable to that in patients with advanced lung and 
pancreatic cancer. 278

Bone and mineral disorders associated with CKD are 
associated with high rates of skeletal fractures with falls. 
Pain is highly prevalent and multifactorial in this popula-
tion, and undertreatment results in poor quality of life. 
The presence of pain should be assessed in all patients 
with CRS through pain quantification with scales such 
as PQRST (presence of pain, quality of pain, radiation, 
precipitating or relieving factors, and timing) and tempo-
ral follow-up with tools such as the modified Edmonton 
Symptom Assessment Scale, which is validated in both 
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CKD and HF. 279 Nonsteroidal anti-inflammatory agents 
are contraindicated in both HF and CKD with the propen-
sity to cause AKI, salt and water retention, and exacerba-
tions of HF. Opioids are generally underprescribed in this 
population, and data suggest that agent choice is often 
inappropriate for CKD. 280 Morphine is mostly contrain-
dicated for chronic pain management with moderate to 
severe CKD because its metabolite (morphine 6 glucuro-
nide) accumulates in CKD, resulting in confusion, deliri-
um, myoclonus, and respiratory depression. Safer alter-
native opioids include hydromorphone, oxycodone, and 
fentanyl. 280 Methadone is safe in HF and CKD for chronic 
stable pain control and must be used with careful QTc in-
terval monitoring. Dyspnea is multifactorial in this popu-
lation, and endurance exercise is beneficial in improving 
quality of life in HF. 281 Peritoneal dialysis has been used in 
diuretic refractory HF with benefits in symptom control. 282  
Opioid therapy should be considered when dyspnea is 
refractory to maximal HF and volume management and 
exercise therapy is maximized or inefficient. Depression 

is highly prevalent in patients with CKD and HF and is an 
independent predictor of mortality. 283 Two randomized 
trials of sertraline in non–dialysis-dependent CKD and in 
HF failed to show benefit over placebo at 12 weeks. 284,285 
Appropriate use of palliative healthcare services in outpa-
tients has been shown to reduce emergency department 
visits and hospital admissions in patients with advanced 
CKD 286 and is an underused strategy in patients with 
advanced CRS. Effective communication, advanced care 
planning, and appropriate use of hospice resources are 
essential parts of the care of the patient with advanced 
CRS with the incorporation of these services into the 
multidisciplinary care approach for this condition.

FUTURE DIRECTIONS IN CARDIORENAL 
MEDICINE
Over the past decade, several strides have been made 
across the globe in streamlining the multidisciplinary ap-

Figure 5. Concept map outlining the workup of pulmonary hypertension (PH) in patients with chronic kidney disease being considered for potential 
kidney transplantation (KTx).  
ACC/AHA indicates American College of Cardiology/American Heart Association; AVF, arteriovenous fistula; CCB, calcium channel blockers; CO, cardiac output; CPAP, 
continuous positive airway pressure; ERA, endothelin receptor antagonist; IV, intravenous; KDOQI, Kidney Disease Outcomes Quality Initiative; NO, nitric oxide; OSA, 
obstructive sleep apnea; PAH, pulmonary arterial hypertension; PAP, pulmonary arterial pressure; PCWP, pulmonary capillary wedge pressure; PDE-5, phosphodiesterase 
inhibitor-5; PO, by mouth; RHC, right-sided heart catheterization; RV, right ventricular; SQ, subcutaneous; WHO, World Health Organization; and WT, weight. The “Fig 
2” referenced in the figure is Figure 2 in the original article.276 Reprinted from Lentine et al 276 with permission. Copyright © 2016, Wolters Kluwer Health, Inc.
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proach to cardiorenal medicine. These have included es-
tablishing disease definitions and specific nomenclature, 
understanding the pathophysiology of the bidirectional 
cross-talk involved in cardiorenal disease, developing 
novel biomarkers to detect early injury and to aid prog-
nosis, and introducing novel imaging techniques. The 
introduction of clinically meaningful composite cardio-
renal outcomes such as major adverse renal cardiovas-
cular events (composite of MI, need for renal replace-
ment therapy, stroke, HF, hospitalizations for cardiac 
reasons, hospitalization for renal reasons, and death) 287 
and major adverse kidney events (composite of persis-
tently impaired renal function, new hemodialysis, and 
death) allows the clinical consequences of AKI and the 
effects of different interventions to be defined more ac-
curately 288,289 (Figure 6). Initiatives such as the SONG col-
laborative (Standardized Outcomes in Nephrology) that 
emphasize core outcome measures reporting across the 
spectrum of kidney disease in trials based on patient 
and physician priorities are a valuable addition to future 
cardiorenal trial outcomes reports. 290 However, patients 
with the dual burden of heart and kidney disease con-
tinue to experience unacceptably high rates of hospi-
talization, symptom burden, and mortality. Early con-
certed efforts to identify and prevent decompensated 
CRS are lacking at the individual and institutional levels, 
with emphasis still being placed on individual special-

ty views on this topic. The writing group endorses the 
need for a dedicated cardiorenal interdisciplinary team 
that spearheads early identification of patients with 
decompensated CRS and jointly manages appropriate 
clinical interventions across the inpatient and outpatient 
settings (Table 8). This collaborative would also oversee 

Figure 6. Outline of major adverse renal and cardiovascular events as a novel target clinical end point in cardiorenal trials.  
GFR indicates glomerular filtration rate.  
Reprinted from Ronco et al 289 with permission. Copyright © 2017, S. Karger AG, Basel.

Table 8. Summary Table of Key Aspects of the Diagnosis and 
Management of CRS

Distinguishing true AKI from functional causes of fluctuations in serum 
creatinine in the context of diuresis for acute decompensated HF is critical 
in ensuring delivery of goal-directed medical therapies.

Identifying the factors contributing to diuretic resistance is a key step in 
optimizing decongestion in CRS.

Biomarkers of cardiac and kidney injury represent a new dimension in the 
diagnostic algorithm in evaluating HF with impaired kidney function and 
offer prognostic value in acute and chronic CRS.

High-quality data for goal-directed medical therapy in chronic CRS with 
moderate to severe decline in kidney function are lacking. They represent 
areas of research in future studies.

A multidisciplinary approach is required for cardiac device therapies to 
reduce arrhythmia burden in patients with HF and CKD.

Palliative care is an underused strategy in patients with the dual burden of 
HF and advanced CKD.

A cardionephrology multidisciplinary approach is essential in the joint 
management of patients with CRS with an emphasis on core outcome 
measures based on patient and physician priorities.

AKI indicates acute kidney injury; CKD, chronic kidney disease; CRS, 
cardiorenal syndrome; and HF, heart failure. 
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cross-training among nephrology and cardiology fellows 
and nursing and allied healthcare providers in both spe-
cialties to foster a deeper understanding of the intrica-
cies of cardiorenal cross-talk. There is a critical need for 
guidelines and best clinical practice models from major 
cardiology and nephrology professional societies geared 
specifically toward cardiorenal medicine outcomes and 
for research funding in both specialties to focus on the 
needs of future therapies. Implementation of local and 
national task forces that emphasize quality improve-
ment measures in cardiorenal disease and the intro-
duction of national quality benchmarks for cardiorenal 
outcomes will help reduce its morbidity, mortality, and 
economic burden. Finally, implementing cross-specialty 
educational programs across all levels in cardiology and 
nephrology will help train future physicians who have 
the ability to diagnose, treat, and prevent the disease 
burden associated with CRS in a precise, clinically effec-
tive, and cost-favorable manner. 
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